Data Mining: Artificial Neural Network
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Course Lecture is very heavily based on
“Introduction to Data Mining”
by Tan, Steinbach, Karpatne, Kumar
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Limitations of Decision-Tree and many other model
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Real-world Intuition
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Basic Architecture of Perceptron
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Artificial Neural Networks (ANN)

e Basic Idea: A complex non-linear function can be
learned as a composition of simple processing
units

® ANN is a collection of simple processing units
(nodes) that are connected by directed links
(edges)

— Every node receives signals from incoming edges, performs
computations, and transmits signals to outgoing edges

— Analogous to human brain where nodes are neurons and
signals are electrical impulses

— Weight of an edge determines the strength of connection
between the nodes

e Simplest ANN: Perceptron (single neuron)



Basic Architecture of Perceptron

Linear function

0
Tanh function

1

Sigmoid function
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Sign function
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y=co(w'x + b)

What happens if
there is no nonlinear
activation?



Linear Regression

. . N

» Data - {(x®,y®)} _ f(X)=xw + b

* Regression — Find f that minimizes our uncertainty about y given x
y=fx)+n

* Minimizing Mean Squared Error = Minimizing Negative Log-Likelihood

N
1

. o\ \ 2
arg;nm N (y(‘) - f (x(‘)))
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Linear Regression
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arg;nm ﬁ; (y(l) - f(x(‘)))
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Loss/Cost Function
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Linear Regression

N
o= 3350 -rs0)

Compute the minimum value? How to do it in Math?

Find points where gradient =0



Linear Regression

N

J(w) = % > (y("’ = wT:%(i))2

=1

kowi/matrixcookbook.pdf

J(W) — %(Y - XW)T(Y - XW) https://www.math.uwaterloo.ca/~hwol

J(W) = % (Y'Y - 2Y'XW + W' XTXW)

VJ(W) = a?v ;/,(YTY —2YTXW + WTXTXW)] XT'xw = X'y
W= (X"X)"'X'Y
VJ(W) = _Zxry + 2 XTXW

N N
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https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Linear Regression

J(w) =

”M?

(negative)
gradient

{starting point

-

[ next point

Jf

value of weight w;,

. A\ 2
(y(z) _ wT:i:("))

If the gradient of a function is non-
zero at a point, the direction of the
gradient is the direction in which
the function increases most quickly
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Linear Regression
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Local Minimum vs Global Minimum

Loss function
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Linear Regression
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Problem of Linear Regression
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NonLinear Regression

* So far, we have been using a linear function for regression:

fx)=wlx+wy =YY% ,w;x; (Assuming x, = 1)

* Lets generalize this model: .
FO) =) wi(x) = wp(x)
i=0
where ¢; are fixed “basis” functions.

* For linear regression M = d, ¢;(x) = x;.

16



NonLinear Regression

E.g., Polynomial Regression:

* 1D Polynomial Regression, ¢ (x) = [1,x, x?%, x3]:

To avoid confusion, note that: ¢(x®) = [1,x®, (x®)2, (x(D)3]

(x®) = wo + wyx® + wy(x©)° + wy (x®)°

M
FG) = ) wii(x) = wTp(x)
i=0

N
f E : :
argmin — E WTp(x®D) = y®)*
W Nn=1
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NonLinear Regression

N
Loss: argminlz (wTep(x®) — y(i))z = argmin||®w — y||?

Where @ = [¢(x™), ...,¢(x(N))]T € RV and w € RM.
Optimization:

1. Closed form solution: w* = (®T®) 1Ty
2. Gradientdescent: w® =w(ED — ¢V Loss(w{™D)

Tw) = 5 30 (3 - w0 What is the problem of
Nonlinear Regression?
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NonLinear Regression

20 -15 -10 -05 00 05 10 15 20
X

The basis function is all fixed!

Can we learn the basis function?

19



NonLinear Regression

* Lets first look at what the learning problem might look like:

argmin )’ ((Z W,b; (x(i>)> _ y(i)>2

W . i

Neural Networks do this for us!

What things are learned here?
What things are fixed here?

20



NonLinear Regression

1-layer Multi-layer Perceptron

Today
Sigmoid £ Leaky RelLU
o N S / max(0.1x, x)
o2)=m= -
tanh f Maxout
tanh(x) max(w] z + b iz + b)
il
RelU ELU
nax(0, x { - r20
¥,
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NonLinear Regression

* Lets first look at what the learning problem might look like:

argmin Z ((Z w;d; (x(i))> _ y(i)>2

wi{e 1L |3

Neural Networks do this for us!

What things are learned here?
What things are fixed here?
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NonLinear Regression

1-hidden layer Multi-layer Perceptron
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NonLinear Regression

1-hidden layer Multi-layer Perceptron

24



Example

e Activations at hidden layers can be viewed as features
extracted as functions of inputs

e Every hidden layer represents a level of abstraction
— Complex features are compositions of simpler features

‘r-’.ﬁ.')'si‘o "-o, !TI'T'
OB

' . ‘o.—‘fo
.\ .r ‘)‘-‘I\J

e Number of layers is known as depth of ANN
— Deeper networks express complex hierarchy of features

25



Question?

TS e
WHO? WHERE? WHAT? mw:::WH WHO? e
WHAT? HOW? WHY? = e
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WHERE? WHICH? WHOSE? WHEN? WHY?

e HOW? WHERE? WHT? .

FWHERE?:.
HOW? WHO?

WHO? WHERE? WHAT? HOW?

WHAT? HOW? WHY?

ZHOW?

N

. "Judge a man by his questions rather than by his answers."

- Voltaire

. "If I had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and

5 minutes thinking about solutions."
- Albert Einstein

. "The art and science of asking questions is the source of all knowledge."

- Thomas Berger

"Asking the right questions takes as much skill as giving the right answers."
- Robert Half

. "The wise man doesn't give the right answers, he poses the right questions."

— Claude Lévi-Strauss

. "Great questions make great companies."

— Peter Drucker

26



Linear Regression

Sold Price ($1K)
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Linear Regression

c | . : y=o(w'x + b)
g, | ° :::“. . . T
a ;1&‘?»( y=o0Ww ¢(x)+Db)

00 1000 1500 2000 2500
Living Area (Square Feet)

2 2 . _ 2 Ty o, 2 T
VIW) = - X"Y 4+ ZXTXW Vj(W) = —Nqb(X) Y+ﬁ¢(X) 0109174

W= (X'X)" XY W= =(@X) "¢ PN)'Y
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Linear Regression

VJ(w) ngu) VJ(w) = _% i(y(z) w!3®)3)
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Linear Regression

Sold Price ($1K)
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Non-Linear Regression

y=o(w'x + b)

y =oWw ¢(x) + b)

-20 -15 -10 =05 00 05 10 15 20
X
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W= (X'X)" XY W= =(@X) "¢ PN)'Y
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Multi-NonLinear Regression

1-hidden layer Multi-layer Perceptron

32



Multi-NonLinear Regression

1-hidden layer Multi-layer Perceptron
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Classification

Regression (y continuous) Classification (y categorical/discrete)

0-850—6—6—86—056—
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Classification

Classification (y categorical/discrete)

=

0.5

0-

7“" p—

What loss should we use?

N

Lw) == ) yDlog(f(x©)) + (1 - y©)log(1 — £(x)

i=1



MINIST Dataset
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MLP for MINIST

O. Hidden layers

A fully connected network would need a very large number of
parameters, very likely to overfit the data
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CNN

Class 1 Class 2

* The features of these classes are spatially local.
* Translation does not change the identity of the
classes, i.e., we require a translation equivariant

model.

* MLP is not a good match to this problem

Can represent a small region with fewer parameters

N g
-0

\

“beak” detector

38



CNN

* The features of these classes are spatially local.

Class 1 Class 2

* Translation does not change the identity of the
classes, i.e., we require a translation equivariant

I model.

* MLP is not a good match to this problem

Can represent a small region with fewer parameters |

+

“beak” detector
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They can be compressed
to the same parameters.

From U-Waterloo’s
Deep Learning Course

II)

What about training a lot of such “small” detectors and each detector must

“move around”.
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CNN

Convolution Layer

-~

I

—

V
——0

32

32x32x3 image
ox5x3 filter

convolve (slide) over all
spatial locations

activation map
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CNN

Convolution Layer

a1

I

—

V
——0

32

consider a second, green filter

32x32x3 image
Sx5x3 filter

convolve (slide) over all
spatial locations

activation maps

y

/A

28
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CNN

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

Y

Convolution Layer

) .

3 6

28

We stack these up to get a “new image” of size 28x28x6!
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CNN

111 [-1 | Filter1

1| 1 |-1| Filter2

OO0 OO |F

O|lFRr[|[O|O | |0
= 1 OO | = | 0O |0

0
1
0
1
1
1

OO0 0|, | 0|0

OO0 O0O|0O0|O|K

6 X 6 image

Each filter detects a
small pattern (3 x 3).
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CNN

1
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6 x 6 image
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CNN

Convolutions (typically with prespecified filters) are a common operation in
many computer vision applications

3
|

Original image z Gaussian blur Image gradient

=1 0 AN —1—2—12"1’
/273 ((z*!—z 0 2]) +(z*[0 0 ()D)
—1 0 1 1 2 1

47
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CNN

Convolution is a linear operator

We need to follow convolution with a
nonlinearity (e.g., ReLU) to get nonlinear
functions.

48



CNN
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CNN

RELU RELU

2
=
i
14
s
i
L
14

RELU RELU

CONV

CONV
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A 1RO & GTRE

¥

CONV

— ALV TR R VRN ,22
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Equivariant and Invariant

input image

input vector

51



Equivariant and Invariant

input image input vector

must learn shift invariance from data!

52



Code Demo

53



Equivariant and Invariant

®-invariance f(p(a)x) = f(x)

j > f —> cat

®-equivariance f(p(a)x) = p(a)f(x)

@k




Equivariant and Invariant

3

/

Image Convolution is ?

55



DNNs

Deep Neural Networks
20% Century Zoo of Neural Network Architectures

56



DNNs

Grid games

I M A G E N E Speech data

Natural language Sentence
proceSSi ng (N LP) Predicate / Verb Phrase
Prepositional Phrase
Noun Phrase
Noun Phrase

Article Noun Verb Preposition Article Noun
| | | | | |

The cat sat on the mat.

Deep neural nets that exploit:

- translation equivariance (weight sharing)
- hierarchical compositionality

57



DNNs

A lot of real-world data does not “live” on grids oy

USA.

\
2" 4

c ‘university S

Social networks balet_dancer o _ o %’ A
Citation networks e PR _hkA C e ) jo( /J;
Communication networks nowiedge grapns
Multi-agent systems - )
it/ \’}%]WN\)L L "kb\rn "
¢ e o ® VY \ru’\ror ¢ I T\t°
@ ares sein ‘ .
® [2) ® o e, AN NG s
° o et : NH,
o. ® NN - Molecules
® o ®
o ®
@ ® 9 ®
® o

Protein interaction o R
networks B g RN

From CNN to GNN

Road maps

* slide from Thomas Kipf, University of Amsterdam
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Sequential Data

The teacher told the student that he was brilliant.

The student told the teacher that he was brilliant.

You read this sentence from left to right and

understand the sentence

59



Sequential Data - RNN

What if we have sequences of variable lengths, like sentences or videos
that we would like to analyze?

Y1 Y2 Y3
N N
I 1 f
X1 | X2 X3
t=1 t=2 t=3

Time or Progression

60



Sequential Data - RNN

Ignore Ignore
RNN > RNN [——F mremmemr
T hy T h,
The food

Token embedding —
DNA of the Token

-

-]

E Vv

Linear
Classifier
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Sequential Data - RNN
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Sequential Data - RNN
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Sequential Data - RNN

What if we have sequences of variable lengths, like sentences or videos
that we would like to analyze?

Y1 Y2 Y3
N R S
I 1 f
X1 X2 X3
t=1 t=2 t=3

How would you setup
the model (token
embedding, MLP layer)

.« hy=a(WT [h’t‘fl])
* yt =F(ht)

64




Sequential Data - RNN

—

& Y

Linear
Classifier
h =Sum(...)
hy

h;

RNN —_—> RNN —_—>
T hy T h,

The food

RNN

good
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Sequential Data - RNN

Image Captioning
* Given an image, produce a sentence describing its contents

* Inputs: Image feature (from a CNN)
e Outputs: Multiple words (let’s consider one sentence)

: The dog is hiding

66



Sequential Data - RNN

Image Captioning

The dog
Linear Linear
Classifier Classifier
Thz Th3
RNN > RNN —> RNN S N —
hl hZ h3

CNN
N

' Arun Mallya -
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Sequential Data - RNN

Input — Output Scenarios

Single - Single | Feed-forward Network

Single - Multiple > > > Image Captioning

Multiple - Single —_ S — Sentiment Classification

Multiple - Multiple —> > > > > Translation

68



Sequential Data - RNN

n=hH(xW)
¥, = L(yiW,)
C=Loss(y,,y;r)
., dC dC

Find

oW, " oW,

oC

oW,

oC _
oW,

( oC
a)’2

(9C

I

a)’1 1

\ a)’1
(9C

I

oW,
a)’2 1

a)’z
oW,

\a)’z

I

a}ﬁ )
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Sequential Data - RNN

h; = f(Whi_y + b) Pl ~amax|| ||

* Largest singular value > 1 = Exploding gradients

* Slight error in the late time steps causes drastic updates in the early time
steps =2 Unstable learning

* Largest singular value < 1 = Vanishing gradients

» Gradients passed to the early time steps is close to 0. 2 Uninformed
correction

Any other problem with RNN?
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Sequential Data - Transformer
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Sequential Data - Transformer

Think of YouTube.

First you enter your Query in the search bar. Then your Query is compared
against a set of Keys (in this case, video titles, tags and descriptions etc. within the
YouTube database). After this, YouTube proceeds to retrieve the videos that best

match your Query. These video results are referred to as Values.

Key Value Query

| would like to taste the local food in France.

72



Sequential Data - Transformer

| would like to taste the local food in France.

Q=XW, K=XWy V=XWy

. . (Q'KT)
I would like to taste the local food in  France i
T: Jda
iR softmax o T
Jd QK"
would h k dk Jd_
2@V
like h
1) h
MatMul
Q K QKT taste h h
the h
local h h
food h h
in h
France h h v
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Sequential Data - Transformer

| would like to taste the local food in France.

Q=XW, K=XWg V=XW,

Attention Weight Matrix Atte nti on
I would like to taste the local food in France
| 0.02 l
Multi-Attention
like 1
Multi-Head Attention
QKT to 0.01
softmax| — | = ’
L W
the 0.01 Concat
L ‘
local 0.2 L |
Scaled Dot-_Product .u’ih
food |0.02|0.02 (005|001 02 |001| 02| 01[009]| 03 |=1 - Attention -
g | I
|
Linear ] Linear Linear J*
FFFFFF ‘;
1
vV K Q
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Sequential Data - Transformer

| would like to taste the local food in France.

Q=XW, K=XWyx V=XW,

Self-Attention Causal-Attention
Attention weight between the tokens In the row for corresponding to “Life”,
corresponding to “Life” and “short” mask out all words that come after “Life"

J
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- |eat
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e

L=z
: i-"‘ desert
B

Life |0. i

=) e
o
~
w

£ + §
HHEE
IHHHHE

JHHHE
H

0.14)/0.11}|0.23 short |0.
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eat (D15 0.14]|0.16//0.17/(0.14 eat
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Sequential Data - Transformer

Cross-attention

Keys and values: Encoder
Queries: Decoder

2000
0000
0000

hy het my gegooi <s> he threw
T T2 3 T4 Yo Y Y2

@000 )

me
Y3
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Sequential Data - Transformer

Multi-Attention

Self-Attention

Sentiment Analysis

Causal-Attention

Next-token
Prediction

Cross-Attention

Translation
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Sequential Data - Transformer

Output Token
Vectors

Token Classification Head

%I E%%I F%I %I
I !
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Sequential Data - Transformer

The teacher told the student that he was brilliant.

The student told the teacher that he was brilliant.

Two sentences using exactly the same tokens but end

up with very different meaning
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Sequential Data - Transformer
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Sequential Data - Transformer

: : k
P (k,21) = sin( ) k: Position of an object in the input sequence, 0 < k < L/2
n2i/d
. k d: Dimension of the output embedding space
P(k,21+ 1) = cos( )
n2i/d
il Positional Encoding
Sequence  of token, Mabrix with d=4, n=100
¢ i=0 i=0 i=1 i=l
Poo=sin(0) Po1=cos(0) Po2=sin(0) Pos=cos(0)
I — 0 = _9 =i =0 = 1

P1o=sin(1/1) = P11=cos(1/1) | P12=sin(1/10) | P13=cos(1/10)
=0.84 = 0.54 =010 = 4.0

. |— 5 P2o=sin(2/1) = P21=cos(2/1) | P22=sin(2/10)  P23=cos(2/10)
= 0.91 = -0.42 = 0.20 = 0.98

_, Pso=sin(3/1)  Psi=cos(3/1) Ps2=sin(3/10) Pss=cos(3/10)

Robot —» 3 = B4 = -0.99 = 0.30 = 0.96
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