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Limitations of Decision-Tree and many other model
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Real-world Intuition
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Basic Architecture of Perceptron
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Artificial Neural Networks (ANN)

 Basic Idea: A complex non-linear function can be 
learned as a composition of simple processing 
units 

 ANN is a collection of simple processing units 
(nodes) that are connected by directed links 
(edges)
– Every node receives signals from incoming edges, performs 

computations, and transmits signals to outgoing edges
– Analogous to human brain where nodes are neurons and 

signals are electrical impulses
– Weight of an edge determines the strength of connection 

between the nodes

 Simplest ANN: Perceptron (single neuron)
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weighted link is used to emulate the strength of a synaptic connection between
neurons.

Figure 4.20. Basic architecture of a perceptron.

The output node is a mathematical device that computes a weighted sum
of its inputs, adds a bias factor b to the sum, and then examines the sign of
the result to produce the output ŷ as follows:

3̂y =

{
1, if wTx+ b > 0.

−1, otherwise.
(4.48)

To simplify notations, w and b can be concatenated to form w̃ = (wT b)T ,
while x can be appended with 1 at the end to form x̃ = (xT 1)T . The output
of the perceptron ŷ can then be written:

ŷ = sign(w̃T x̃),

where the sign function acts as an activation function by providing an
output value of +1 if the argument is positive and −1 if its argument is
negative.

Learning the Perceptron

Given a training set, we are interested in learning parameters w̃ such that ŷ
closely resembles the true y of training instances. This is achieved by using the
perceptron learning algorithm given in Algorithm 4.3. The key computation
for this algorithm is the iterative weight update formula given in Step 8 of the
algorithm:

w(k+1)
j = w(k)

j + λ
(
yi − ŷ(k)i

)
xij , (4.49)

Basic Architecture of Perceptron

𝑦 = 𝜎(𝑤!𝑥 + 𝑏)

What happens if
there is no nonlinear

activation?
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Linear Regression

f(x)= 𝑥𝑤 + 𝑏
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Linear Regression
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Linear Regression

Compute the minimum value? How to do it in Math?

Find points where gradient = 0
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Linear Regression

https://www.math.uwaterloo.ca/~hwol
kowi/matrixcookbook.pdf

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Linear Regression

If the gradient of a function is non-
zero at a point, the direction of the 
gradient is the direction in which 

the function increases most quickly
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Linear Regression
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Local Minimum vs Global Minimum
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Linear Regression

f(x)= 𝑤"𝑥 + 𝑏

Slope

Intercept
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Problem of Linear Regression
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NonLinear Regression
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NonLinear Regression
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NonLinear Regression

What is the problem of
Nonlinear Regression?
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NonLinear Regression

The basis function is all fixed!

Can we learn the basis function?
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NonLinear Regression

What things are learned here?
What things are fixed here?
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NonLinear Regression

1-layer Multi-layer Perceptron

1

𝜙!(𝑥!)

…

+

𝑤!"

𝑤""

𝑤#"

𝑤$"

𝑤%"

…

𝜎𝜙"(𝑥!)

𝜙#(𝑥!)

𝜙$&(𝑥!)

!
!"#

$%

𝑤&
!𝜙&(𝑥

!)



22

What things are learned here?
What things are fixed here?

NonLinear Regression
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NonLinear Regression
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NonLinear Regression

1-hidden layer Multi-layer Perceptron
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Example

 Activations at hidden layers can be viewed as features 
extracted as functions of inputs

 Every hidden layer represents a level of abstraction
– Complex features are compositions of simpler features

 Number of layers is known as depth of ANN
– Deeper networks express complex hierarchy of features
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Question?
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Linear Regression
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weighted link is used to emulate the strength of a synaptic connection between
neurons.

Figure 4.20. Basic architecture of a perceptron.

The output node is a mathematical device that computes a weighted sum
of its inputs, adds a bias factor b to the sum, and then examines the sign of
the result to produce the output ŷ as follows:

3̂y =

{
1, if wTx+ b > 0.

−1, otherwise.
(4.48)

To simplify notations, w and b can be concatenated to form w̃ = (wT b)T ,
while x can be appended with 1 at the end to form x̃ = (xT 1)T . The output
of the perceptron ŷ can then be written:

ŷ = sign(w̃T x̃),

where the sign function acts as an activation function by providing an
output value of +1 if the argument is positive and −1 if its argument is
negative.

Learning the Perceptron

Given a training set, we are interested in learning parameters w̃ such that ŷ
closely resembles the true y of training instances. This is achieved by using the
perceptron learning algorithm given in Algorithm 4.3. The key computation
for this algorithm is the iterative weight update formula given in Step 8 of the
algorithm:

w(k+1)
j = w(k)

j + λ
(
yi − ŷ(k)i

)
xij , (4.49)

𝜎(𝑤!𝑥 + 𝑏)

Analytical
Solution

Gradient
Descent
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Linear Regression

𝑦 = 𝜎(𝑤!𝜙(𝑥) + 𝑏)

y= 𝜎(𝑤!𝑥 + 𝑏)

𝛻𝐽(𝑊) = −
2
𝑁
𝜙 𝑋 '𝑌 +

2
𝑁
𝜙 𝑋 (𝜙(𝑋)𝑊

𝑊∗ = 𝜙(𝑋)(𝜙(𝑋) *&𝜙(𝑋)(𝑌
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Linear Regression
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Linear Regression

y= 𝑤#𝑥 + 𝑤"
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Non-Linear Regression

𝑦 = 𝜎(𝑤!𝜙(𝑥) + 𝑏)

y= 𝜎(𝑤!𝑥 + 𝑏)

𝛻𝐽(𝑊) = −
2
𝑁
𝜙 𝑋 '𝑌 +

2
𝑁
𝜙 𝑋 (𝜙(𝑋)𝑊

𝑊∗ = 𝜙(𝑋)(𝜙(𝑋) *&𝜙(𝑋)(𝑌
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Multi-NonLinear Regression
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Multi-NonLinear Regression

1-hidden layer Multi-layer Perceptron

𝒘𝒎
𝟏
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Classification
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Classification
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MINIST Dataset
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MLP for MINIST
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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Equivariant and Invariant
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Equivariant and Invariant
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Code Demo
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Equivariant and Invariant
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Equivariant and Invariant

Image Convolution is ?
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DNNs



57

DNNs
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DNNs
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Sequential Data

The teacher told the student that he was brilliant.

The student told the teacher that he was brilliant.

You read this sentence from left to right and

understand the sentence
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Sequential Data - RNN
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Sequential Data - RNN

Token embedding –
DNA of the Token
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Sequential Data - RNN
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Sequential Data - RNN
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Sequential Data - RNN

How would you setup
the model (token

embedding, MLP layer)
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Sequential Data - RNN
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Sequential Data - RNN
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Sequential Data - RNN
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Sequential Data - RNN
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Sequential Data - RNN
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Sequential Data - RNN

Any other problem with RNN?
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Sequential Data - Transformer

Key  Value  Query
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Sequential Data - Transformer

Key  Value  Query
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Sequential Data - Transformer
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Sequential Data - Transformer

Attention

Multi-Attention
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Sequential Data - Transformer

Causal-AttentionSelf-Attention
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Sequential Data - Transformer

Cross-attention



77

Sequential Data - Transformer

Multi-Attention

Cross-AttentionSelf-Attention Causal-Attention

Sentiment Analysis Next-token
Prediction

Translation
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Sequential Data - Transformer
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Sequential Data - Transformer

The teacher told the student that he was brilliant.

The student told the teacher that he was brilliant.

Two sentences using exactly the same tokens but end

up with very different meaning
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Sequential Data - Transformer
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Sequential Data - Transformer


