Data Mining: Artificial Neural Network

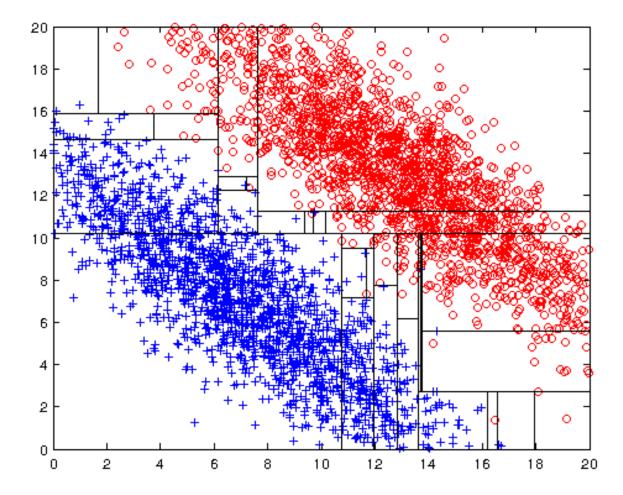
Lecture Notes for Chapter 3 Data Mining

https://ml-graph.github.io/winter-2025/

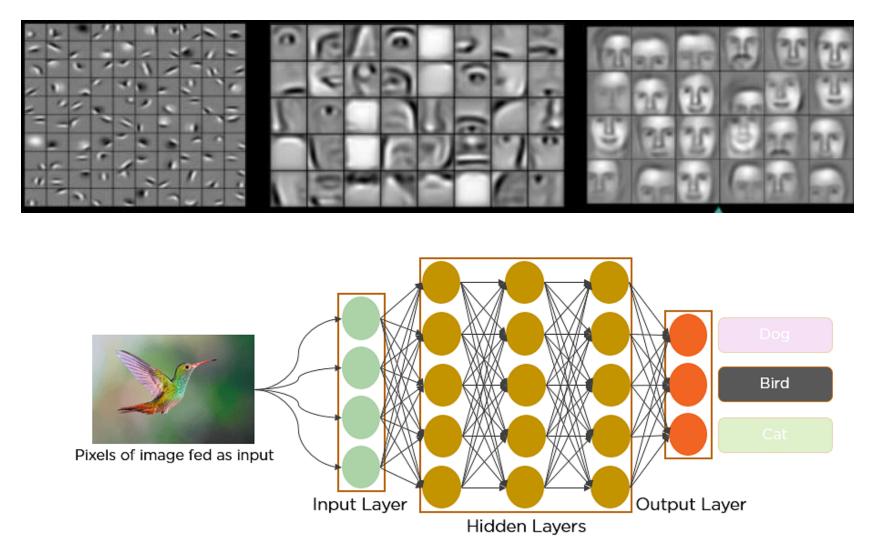
Yu Wang, Ph.D. <u>yuwang@uoregon.edu</u> Assistant Professor Computer Science University of Oregon CS 453/553 – Winter 2025

Course Lecture is very heavily based on "Introduction to Data Mining" by Tan, Steinbach, Karpatne, Kumar

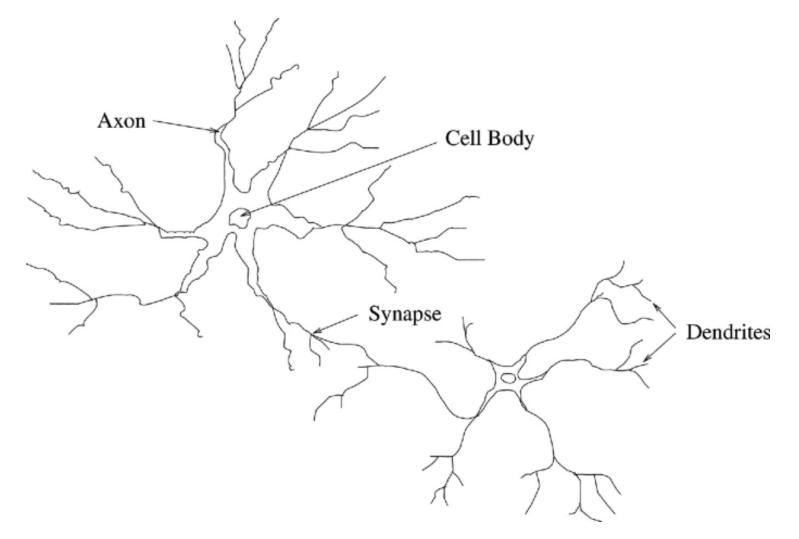
Limitations of Decision-Tree and many other model



Real-world Intuition



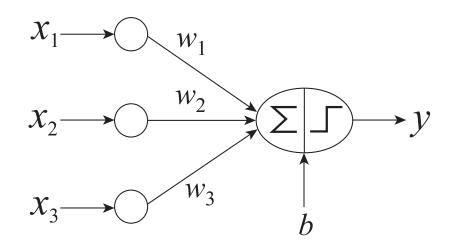
Basic Architecture of Perceptron



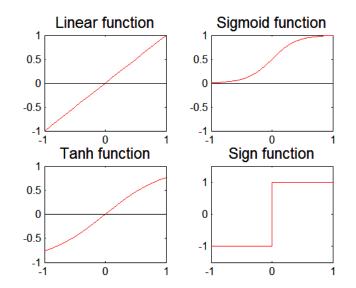
Artificial Neural Networks (ANN)

- Basic Idea: A complex non-linear function can be learned as a composition of simple processing units
- ANN is a collection of simple processing units (nodes) that are connected by directed links (edges)
 - Every node receives signals from incoming edges, performs computations, and transmits signals to outgoing edges
 - Analogous to *human brain* where nodes are neurons and signals are electrical impulses
 - Weight of an edge determines the strength of connection between the nodes
- Simplest ANN: Perceptron (single neuron)

Basic Architecture of Perceptron



$$y = \sigma(w^{\mathrm{T}}x + b)$$



What happens if there is no nonlinear activation?

• Data -
$$\{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$$
 $f(x) = xw + b$

• Regression – Find f that minimizes our uncertainty about y given x

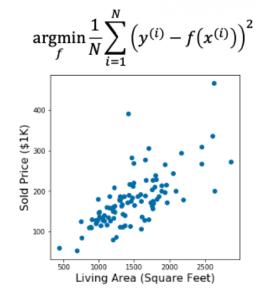
$$y = f(x) + n$$

Minimizing Mean Squared Error = Minimizing Negative Log-Likelihood

$$\underset{f}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - f(x^{(i)}) \right)^2$$

$$\underset{w}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - w^T \hat{x}^{(i)})^2 = \underset{w}{\operatorname{argmin}} \frac{1}{N} ||y - Xw||^2$$

$$\underset{\text{Loss/Cost Function}}{\operatorname{Loss/Cost Function}}$$
Where



•
$$y = [y^{(1)}, ..., y^{(N)}]^T \in \mathbb{R}^{N \times 1}$$
 and
• $X = [\hat{x}^{(1)}, ..., \hat{x}^{(N)}]^T \in \mathbb{R}^{N \times (d+1)}$ (here $d = 1$)
• $w = [w_0, w_1, ..., w_d]^T \in \mathbb{R}^{d+1}$

$$J(w) = rac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - w^T \hat{x}^{(i)}
ight)^2$$

Compute the minimum value? How to do it in Math?

Find points where gradient = 0

$$J(w) = rac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - w^T \hat{x}^{(i)}
ight)^2$$

$$J(W) = rac{1}{N}(Y-XW)^T(Y-XW)$$

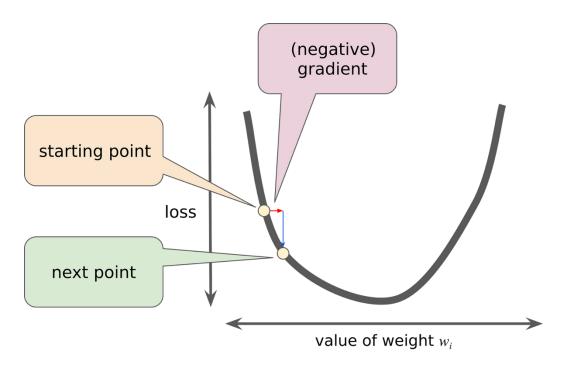
https://www.math.uwaterloo.ca/~hwol kowi/matrixcookbook.pdf

$$J(W) = rac{1}{N} \left(Y^TY - 2Y^TXW + W^TX^TXW
ight)$$

$$abla J(W) = rac{\partial}{\partial W} \left[rac{1}{N} (Y^T Y - 2Y^T X W + W^T X^T X W)
ight] \qquad X^T X W = X^T Y \ W^* = (X^T X)^{-1} X^T Y$$

$$abla J(W) = -rac{2}{N}X^TY + rac{2}{N}X^TXW$$

$$J(w) = rac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - w^T \hat{x}^{(i)}
ight)^2$$



If the gradient of a function is nonzero at a point, the direction of the gradient is the direction in which the function increases most quickly

$$J(w) = rac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - w^T \hat{x}^{(i)}
ight)^2$$

$$abla J(w) = rac{\partial J(w)}{\partial w} \qquad \qquad
abla J(w) = -rac{2}{N}\sum_{i=1}^N (y^{(i)} - w^T \hat{x}^{(i)}) \hat{x}^{(i)}$$

$$J(w) = rac{1}{N}\sum_{i=1}^{N}(y^{(i)}-w^T\hat{x}^{(i)})^2$$

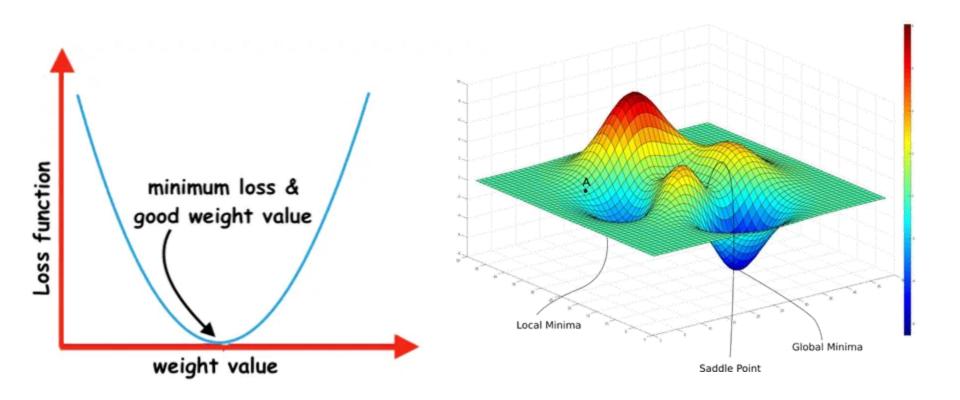
$$w_0:=w_0+rac{2lpha}{N}\sum_{i=1}^N(y^{(i)}-(w_0+w_1x_1^{(i)}))$$

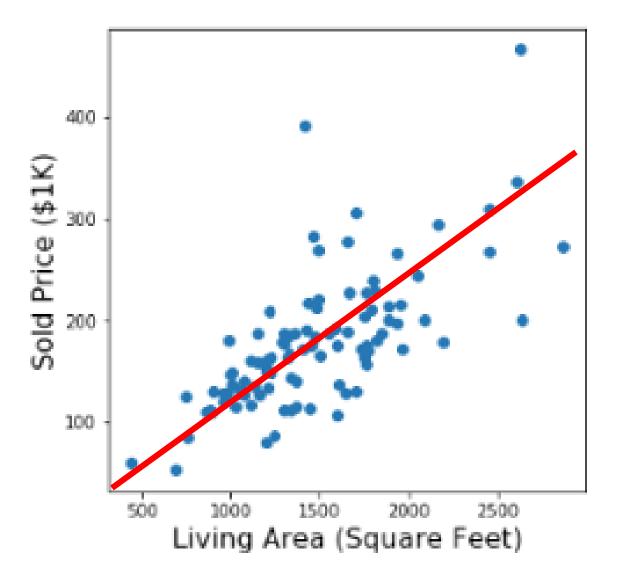
$$rac{\partial J(w)}{\partial w} = rac{1}{N}\sum_{i=1}^{N}2(y^{(i)}-w^T\hat{x}^{(i)})(-\hat{x}^{(i)})$$

$$=-rac{2}{N}\sum_{i=1}^{N}(y^{(i)}-w^{T}\hat{x}^{(i)})\hat{x}^{(i)}$$

$$w_1:=w_1+rac{2lpha}{N}\sum_{i=1}^N(y^{(i)}-(w_0+w_1x_1^{(i)}))x_1^{(i)}$$

Local Minimum vs Global Minimum



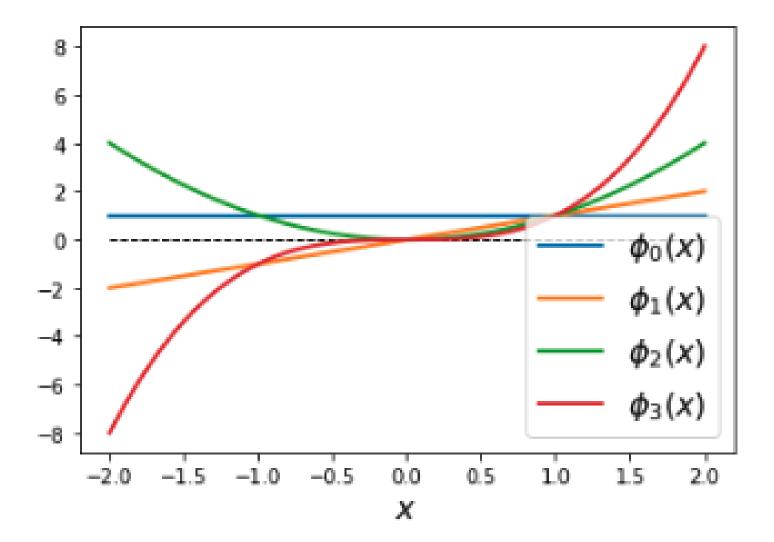


$$\mathbf{f}(\mathbf{x}) = w_0 x + b$$

Slope

Intercept

Problem of Linear Regression



• So far, we have been using a linear function for regression:

$$f(x) = w^T x + w_0 = \sum_{i=0}^d w_i x_i$$
 (Assuming $x_0 = 1$)

• Lets generalize this model:

$$f(x) = \sum_{i=0}^{M} w_i \phi_i(x) = w^T \phi(x)$$

where ϕ_i are fixed "basis" functions.

• For linear regression M = d, $\phi_i(x) = x_i$.

$$f(x) = \sum_{i=0}^{M} w_i \phi_i(x) = w^T \phi(x)$$

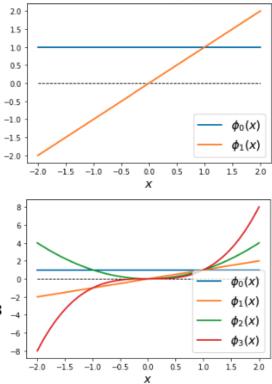
E.g., Polynomial Regression:

• 1D Polynomial Regression, $\phi(x) = [1, x, x^2, x^3]$:

$$\underset{w}{\operatorname{argmin}} \frac{1}{N} \sum_{n=1}^{N} \left(w^{T} \phi(x^{(i)}) - y^{(i)} \right)^{2}$$

To avoid confusion, note that: $\phi(x^{(i)}) = [1, x^{(i)}, (x^{(i)})^2, (x^{(i)})^3]$

$$f(x^{(i)}) = w_0 + w_1 x^{(i)} + w_2 (x^{(i)})^2 + w_3 (x^{(i)})^3$$



Loss:

$$\operatorname{argmin}_{w} \frac{1}{N} \sum_{n=1}^{N} \left(w^{T} \phi(x^{(i)}) - y^{(i)} \right)^{2} = \operatorname{argmin}_{w} \|\Phi w - y\|^{2}$$
Where $\Phi = \left[\phi(x^{(1)}), \dots, \phi(x^{(N)}) \right]^{T} \in \mathbb{R}^{N \times M}$ and $w \in \mathbb{R}^{M}$.

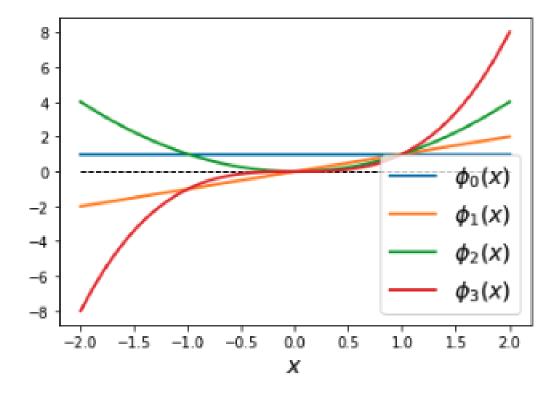
Optimization:

- 1. Closed form solution: $w^* = (\Phi^T \Phi)^{-1} \Phi^T y$
- 2. Gradient descent: $w^{(t)} = w^{(t-1)} \epsilon \nabla_w Loss(w^{(t-1)})$

 $J(w) = rac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - w^T \hat{x}^{(i)}
ight)^2$

 $W^* = (X^T X)^{-1} X^T Y$

What is the problem of Nonlinear Regression?



The basis function is all fixed! Can we learn the basis function?

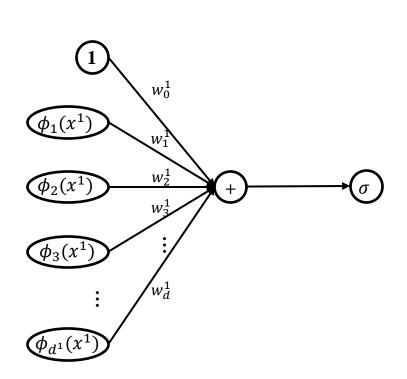
Lets first look at what the learning problem might look like:

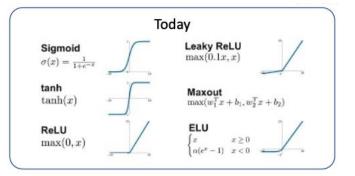
$$\underset{w}{\operatorname{argmin}} \sum_{i} \left(\left(\sum_{j} w_{j} \phi_{j}(x^{(i)}) \right) - y^{(i)} \right)^{2}$$

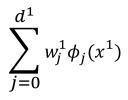
Neural Networks do this for us!

What things are learned here? What things are fixed here?

1-layer Multi-layer Perceptron







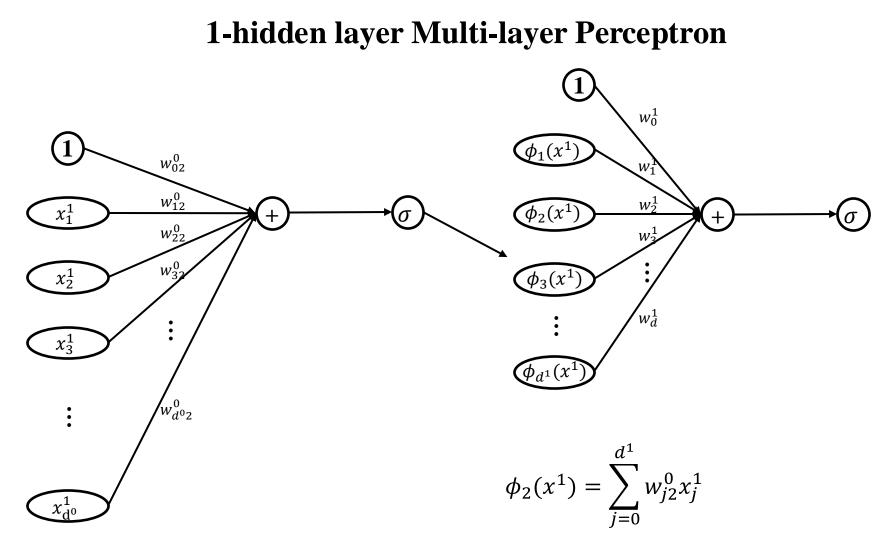
21

Lets first look at what the learning problem might look like:

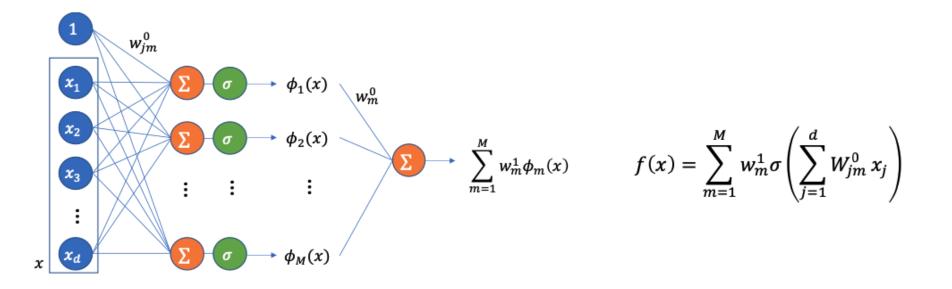
$$\underset{w[\{\phi_j\}_{j=1}^M}{\operatorname{argmin}} \sum_{i} \left(\left(\sum_{j} w_j \phi_j(x^{(i)}) \right) - y^{(i)} \right)^2$$

Neural Networks do this for us!

What things are learned here? What things are fixed here?

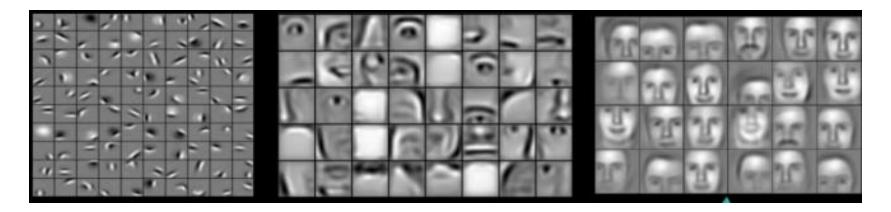


1-hidden layer Multi-layer Perceptron



Example

- Activations at hidden layers can be viewed as features extracted as functions of inputs
- Every hidden layer represents a level of abstraction
 - Complex features are compositions of simpler features



- Number of layers is known as depth of ANN
 - Deeper networks express complex hierarchy of features

Question?

- 1. "Judge a man by his questions rather than by his answers."
 - Voltaire
- "If I had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and 5 minutes thinking about solutions."
 - Albert Einstein
- 3. "The art and science of asking questions is the source of all knowledge."
 - Thomas Berger
- 4. "Asking the right questions takes as much skill as giving the right answers."
 Robert Half
- 5. "The wise man doesn't give the right answers, he poses the right questions."
 - Claude Lévi-Strauss
- 6. "Great questions make great companies."
 - Peter Drucker