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Limitations of Decision-Tree and many other model




Real-world Intuition
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Basic Architecture of Perceptron
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Artificial Neural Networks (ANN)

0 Basic Idea: A complex non-linear function can be
learned as a composition of simple processing
units

0 ANN is a collection of simple processing units
(nodes) that are connected by directed links
(edges)

— Every node receives signals from incoming edges, performs
computations, and transmits signals to outgoing edges

— Analogous to human brain where nodes are neurons and
signals are electrical impulses

— Weight of an edge determines the strength of connection
between the nodes

0 Simplest ANN: Perceptron (single neuron)



Basic Architecture of Perceptron
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Linear Regression

. o~ N

* Data - {(x(l),y("))}iﬂ f(X)=xw + b

* Regression — Find f that minimizes our uncertainty about y given x
y=fx)+n

* Minimizing Mean Squared Error = Minimizing Negative Log-Likelihood
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Linear Regression
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Linear Regression
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Compute the minimum value? How to do it in Math?

Find points where gradient =0



Linear Regression
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Linear Regression
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If the gradient of a function is non-
zero at a point, the direction of the
gradient is the direction in which
the function increases most quickly
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Linear Regression
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Local Minimum vs Global Minimum
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Linear Regression
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Problem of Linear Regression
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NonLinear Regression

* So far, we have been using a linear function for regression:

f) =wlix +wy =X% ,wix; (Assuming x, = 1)

* Lets generalize this model: .
FO) =) wiy(x) = wT ()
i=0
where ¢; are fixed “basis” functions.

* For linear regression M = d, ¢;(x) = x;.
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NonLinear Regression
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NonLinear Regression
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Optimization:

1. Closed form solution: w* = (dTd) " 1dpTy
2. Gradientdescent: w® =w(ED — ¢V Loss(w(D)
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What is the problem of

J(w) = %g (y[” wTi‘“]) - -
Nonlinear Regression?

W' = (XTX)'xTy
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NonLinear Regression
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The basis function is all fixed!

Can we learn the basis function?
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NonLinear Regression

* Lets first look at what the learning problem might look like:

argmin S: ((S: 'y (x(o)) _ y(i))z

w o

Neural Networks do this for us!

What things are learned here?
What things are fixed here?
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NonLinear Regression

1-layer Multi-layer Perceptron
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NonLinear Regression

* Lets first look at what the learning problem might look like:

argmin S: ((S: 'y (x(a)) _ y(i))z

w315

Neural Networks do this for us!

What things are learned here?
What things are fixed here?
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NonLinear Regression

1-hidden layer Multi-layer Perceptron
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NonLinear Regression

1-hidden layer Multi-layer Perceptron
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Example

0 Activations at hidden layers can be viewed as features
extracted as functions of inputs

0 Every hidden layer represents a level of abstraction
— Complex features are compositions of simpler features

0 Number of layers is known as depth of ANN
— Deeper networks express complex hierarchy of features
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Question?
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"Judge a man by his questions rather than by his answers."
- Voltaire

"If | had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and
5 minutes thinking about solutions."
- Albert Einstein

"The art and science of asking questions is the source of all knowledge."

- Thomas Berger

"Asking the right questions takes as much skill as giving the right answers."
- Robert Half

"The wise man doesn't give the right answers, he poses the right questions."

- Claude Lévi-Strauss

"Great questions make great companies.”

- Peter Drucker
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