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Lecture Notes 
Data Mining

https://ml-graph.github.io/winter-2025/

Yu Wang, Ph.D.
yuwang@uoregon.edu

Assistant Professor
Computer Science

University of Oregon
CS 453/553 – Winter 2025

Course Lecture is very heavily based on 
“Introduction to Data Mining” 

by Tan, Steinbach, Karpatne, Kumar

Data Mining: KNN and K-means clustering

https://ml-graph.github.io/winter-2025/
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Nearest Neighbor Classifiers

 Basic idea:
– If it walks like a duck, quacks like a duck, 

then it’s probably a duck

Training 
Records

Test 
Record

Compute 
Distance

Choose k of the 
“nearest” records
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Nearest Neighbor Classifiers

 Requires the following:
– A set of labeled records
– Proximity metric to compute 

distance/similarity between a 
pair of records 

– e.g., Euclidean distance

– The value of k, the number of 
nearest neighbors to retrieve

– A method for using class 
labels of K nearest neighbors 
to determine the class label of 
unknown record (e.g., by 
taking majority vote)
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Nearest Neighbor Classifiers

 Take the majority vote of class labels among 
the k-nearest neighbors

 Weight the vote according to distance
–  weight factor, 𝑤	 = 	1/𝑑2
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Nearest Neighbor Classifiers

 For documents, cosine is better than correlation or 
Euclidean

1 1 1 1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0
vs

Euclidean distance = 1.4142  for both pairs, but 
the cosine similarity  measure has different 
values for these pairs.
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Nearest Neighbor Classifiers

 Data preprocessing is often required
– Attributes may have to be scaled to prevent 

distance measures from being dominated by one 
of the attributes
uExample:

–  height of a person may vary from 1.5m to 1.8m
–  weight of a person may vary from 90lb to 300lb
–  income of a person may vary from $10K to $1M

– Time series are often standardized to have 
0 means a standard deviation of 1
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Nearest Neighbor Classifiers

 Choosing the value of k:
– If k is too small, sensitive to noise points
– If k is too large, neighborhood may include points 

from other classes

!
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Nearest Neighbor Classifiers

1-nn decision boundary is 
a Voronoi Diagram

 Nearest neighbor 
classifiers are local 
classifiers

 They can produce 
decision boundaries of 
arbitrary shapes. 

Code 
Demo
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Nearest Neighbor Classifiers

 How to handle missing values in training and 
test sets?
– Proximity computations normally require the 

presence of all attributes
– Some approaches use the subset of attributes 

present in two instances  
u This may not produce good results since it 

effectively uses different  proximity measures for 
each pair of instances

u Thus, proximities are not comparable
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Nearest Neighbor Classifiers

– Irrelevant attributes add noise to the proximity measure
– Redundant attributes bias the proximity measure towards certain 

attributes
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Improving KNN Efficiency

 Avoid having to compute distance to all objects in the 
training set

– Multi-dimensional access methods (k-d trees)  

– Locality Sensitive Hashing (LSH) 
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Schedule from now on

Today – Finish KNN and K-means clustering

Wednesday – Naïve Bayesian

Next Monday – PCA/SVM + Review

Next Wednesday – Quiz2 (No PCA/SVM)

3/10 Monday – PCA/SVM

Presentation done, 
grade release for 

presentation

3/14 – Project Report
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Nearest Neighbor Classifiers

 Basic idea:
– If it walks like a duck, quacks like a duck, 

then it’s probably a duck

Training 
Records

Test 
Record

Compute 
Distance

Choose k of the 
“nearest” records
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Nearest Neighbor Classifiers

 Requires the following:
– A set of labeled records
– Proximity metric to compute 

distance/similarity between a 
pair of records 

– e.g., Euclidean distance

– The value of k, the number of 
nearest neighbors to retrieve

– A method for using class 
labels of K nearest neighbors 
to determine the class label of 
unknown record (e.g., by 
taking majority vote)
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Nearest Neighbor Classifiers

User as query to search
nearest product
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Nearest Neighbor Classifiers
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Nearest Neighbor Classifiers

Brute-force avg time: 0.131 ms 
KD-Tree avg time: 0.059 ms
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Nearest Neighbor Classifiers
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Nearest Neighbor Classifiers

K-means clustering
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K-Means Clustering
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K-Means Clustering



26

K-Means Clustering
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K-Means Clustering



28

K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering
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K-Means Clustering

1. Guaranteed to Converge in a finite number of iterations

2. The converging point really depends on the initial centroids

3. Running time
       (1) Assign data points to closest centroid: O(KND)
       (2) Change the cluster center: O(ND)
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K-Means Clustering

Choice of Distance Matters
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K-Means Clustering

Choice of Distance Matters
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K-Means Clustering

Kernel + Clustering
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Hierarchical Clustering

 Produces a set of nested clusters organized 
as a hierarchical tree

 Can be visualized as a dendrogram
– A tree like diagram that records the sequences of 

merges or splits
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Hierarchical Clustering

 Do not have to assume any particular number 
of clusters
– Any desired number of clusters can be obtained 

by ‘cutting’ the dendrogram at the proper level

 They may correspond to meaningful 
taxonomies
– Example in biological sciences (e.g., animal 

kingdom, phylogeny reconstruction, …)



45

Hierarchical Clustering

 Two main types of hierarchical clustering
– Agglomerative:  

u Start with the points as individual clusters
u At each step, merge the closest pair of clusters until only one 

cluster (or k clusters) left

– Divisive:  
u Start with one, all-inclusive cluster 
u At each step, split a cluster until each cluster contains an 

individual point (or there are k clusters)
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Hierarchical Clustering

 Key Idea: Successively merge closest clusters
 Basic algorithm

1. Compute the proximity matrix
2. Let each data point be a cluster
3. Repeat
4.  Merge the two closest clusters
5.  Update the proximity matrix
6. Until only a single cluster remains
 

 Key operation is the computation of the proximity of two 
clusters

– Different approaches to defining the distance between 
clusters distinguish the different algorithms



47

Hierarchical Clustering

 Start with clusters of individual points and a 
proximity matrix
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Hierarchical Clustering
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Hierarchical Clustering
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Hierarchical Clustering
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Hierarchical Clustering
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Hierarchical Clustering
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Hierarchical Clustering


