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Limitations of Decision-Tree and many other model
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Basic Architecture of Perceptron
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Artificial Neural Networks (ANN)

0 Basic Idea: A complex non-linear function can be
learned as a composition of simple processing
units

0 ANN is a collection of simple processing units
(nodes) that are connected by directed links
(edges)

— Every node receives signals from incoming edges, performs
computations, and transmits signals to outgoing edges

— Analogous to human brain where nodes are neurons and
signals are electrical impulses

— Weight of an edge determines the strength of connection
between the nodes

0 Simplest ANN: Perceptron (single neuron)



Basic Architecture of Perceptron
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Linear Regression
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* Data - {(x(l),y("))}iﬂ f(X)=xw + b

* Regression — Find f that minimizes our uncertainty about y given x
y=fx)+n

* Minimizing Mean Squared Error = Minimizing Negative Log-Likelihood
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Linear Regression
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Linear Regression

J(w) —%i( ) :r,‘})

i=1

Compute the minimum value? How to do it in Math?

Find points where gradient =0



Linear Regression

) = £ 3 (40 - uTs0)
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Linear Regression
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If the gradient of a function is non-
zero at a point, the direction of the
gradient is the direction in which
the function increases most quickly
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Linear Regression

) = £ 3 (40 - uTs0)
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Local Minimum vs Global Minimum
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Linear Regression
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Problem of Linear Regression

Po(x)
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NonLinear Regression

* So far, we have been using a linear function for regression:

f) =wlix +wy =X% ,wix; (Assuming x, = 1)

* Lets generalize this model: .
FO) =) wiy(x) = wT ()
i=0
where ¢; are fixed “basis” functions.

* For linear regression M = d, ¢;(x) = x;.
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NonLinear Regression
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NonLinear Regression

N
1 : .
Loss: argmin—z (wTep(x®) — y(‘))z = argmin||®w — y||?
w Nﬂ.=1 w
Where @ = [¢(xV), ..., ¢(x(N))]T € RV*M and w € RM.
Optimization:

1. Closed form solution: w* = (dTd) " 1dpTy
2. Gradientdescent: w® =w(ED — ¢V Loss(w(D)

¥
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What is the problem of

J(w) = %g (y[” wTi‘“]) - -
Nonlinear Regression?

W' = (XTX)'xTy
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NonLinear Regression
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The basis function is all fixed!

Can we learn the basis function?
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NonLinear Regression

* Lets first look at what the learning problem might look like:

argmin S: ((S: 'y (x(o)) _ y(i))z

w o

Neural Networks do this for us!

What things are learned here?
What things are fixed here?
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NonLinear Regression

1-layer Multi-layer Perceptron
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NonLinear Regression

* Lets first look at what the learning problem might look like:

argmin S: ((S: 'y (x(a)) _ y(i))z

w315

Neural Networks do this for us!

What things are learned here?
What things are fixed here?
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NonLinear Regression

1-hidden layer Multi-layer Perceptron
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NonLinear Regression

1-hidden layer Multi-layer Perceptron
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Example

0 Activations at hidden layers can be viewed as features
extracted as functions of inputs

0 Every hidden layer represents a level of abstraction
— Complex features are compositions of simpler features

0 Number of layers is known as depth of ANN
— Deeper networks express complex hierarchy of features
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Question?
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"Judge a man by his questions rather than by his answers."
- Voltaire

"If | had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and
5 minutes thinking about solutions."
- Albert Einstein

"The art and science of asking questions is the source of all knowledge."

- Thomas Berger

"Asking the right questions takes as much skill as giving the right answers."
- Robert Half

"The wise man doesn't give the right answers, he poses the right questions."

- Claude Lévi-Strauss

"Great questions make great companies.”

- Peter Drucker
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Linear Regression
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Linear Regression
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Linear Regression
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Linear Regression
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Non-Linear Regression

y=o(w'x + b)

y =a(w $(x)+Db)
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Multi-NonLinear Regression

1-hidden layer Multi-layer Perceptron
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Multi-NonLinear Regression

1-hidden layer Multi-layer Perceptron
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Classification

Classification (y categorical/discrete)

Regression (y continuous)

—O-600—6—8-86—08—
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Classification

Classification (y categorical/discrete)
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MINIST Dataset
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MLP for MINIST

O. Hidden layers

A fully connected network would need a very large number of
parameters, very likely to overfit the data
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* The features of these classes are spatially local.
* Translation does not change the identity of the
classes, i.e., we require a translation equivariant

model.

* MLP is not a good match to this problem

Can represent a small region with fewer parameters |

“beak” detector

38



CNN

* The features of these classes are spatially local.

Class 1 Class 2

* Translation does not change the identity of the
classes, i.e., we require a translation equivariant

model.

* MLP is not a good match to this problem

Can represent a small region with fewer parameters |

“beak” detector
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N

They can be compressed
to the same parameters.

i\_' | ‘e From U-Waterloo’s
Deep Learning Course

What about training a lot of such “small” detectors and each detector must
“move around”.
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CNN

Convolution Layer

activation map

32x32x3 image
ox5x3 filter

=

32

convolve (slide) over all
spatial locations
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CNN

Convolution Layer consider a second, green filter

32x32x3 image activation maps
5x5x3 filter

=

32

convolve (slide) over all
spatial locations
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CNN

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

32

28

Convolution Layer

32 A

3 6

We stack these up to get a “new image” of size 28x28x6!
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CNN

1111 Filter 1
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OO0, OO |F

O|l= OO0 |=|O

= 1O 0O |= |00

O 10| 0 | = | 0|0
R(R|R[O|R|O

OO0 0|0 |0 |k

6 X 6 image

Each filter detects a
small pattern (3 x 3).
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CNN
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6 x 6 image
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CNN

Convolutions (typically with prespecified filters) are a common operation in
many computer vision applications

Original image z Gaussian blur Image gradient

' /

1 4 7 4 1 ;
4 16 26 16 4 ( 4 0 ATV? s Rt
zx |7 26 41 26 7| /273 (z*|:—2 0 2]) +(z*[0 0 ()D
4 16 26 16 4 10 1 1 2 1
1 4 4 4 1
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CNN

Convolution is a linear operator

We need to follow convolution with a
nonlinearity (e.g., ReLU) to get nonlinear
functions.
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CNN
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CNN
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Equivariant and Invariant

| I

input image input vector
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Equivariant and Invariant

input image input vector

must learn shift invariance from data!
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Code Demo
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Equivariant and Invariant

®-invariance f(p(a)x) = f(x)

& 7

G-equivariance f(p(a)x) = p(a)f(x)

@ ) a




Equivariant and Invariant

Image Convolution is ?
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DNNs

Deep Neural Networks
20% Century Zoo of Neural Network Architectures
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DNNs

IMAGEN ET Speech data

Grid games

Natural language Sentence
proceSSi ng (N LP) Predicate / Verb Phrase
Prepositional Phrase
Noun Phrase
Noun Phrase

Article Noun Verb Preposition Article Noun
| | | | | |

The cat sat on the mat.

Deep neural nets that exploit:

- translation equivariance (weight sharing)
- hierarchical compositionality
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DNNs

A lot of real-world data does not “live” on grids =7
o 3 wuniversity
T e Ty Y(i% .
Social networks . s LY %ﬁ"
Citation networks ° 4

Communication networks

" Knowledge graphs ([ wowome ] o \g:NLO A

Multi-agent systems N ) :\i 55* ::\Eo/\
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Protein interaction
networks

From CNN to GNN

Road maps

* slide from Thomas Klpf, University of Amsterdam
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Sequential Data

The teacher told the student that he was brilliant.

The student told the teacher that he was brilliant.

You read this sentence from left to right and

understand the sentence
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Sequential Data - RNN

What if we have sequences of variable lengths, like sentences or videos
that we would like to analyze?

Y1
hg I hy 1 h; I
| f
X1 X2 ‘ X3
t=1 t=2 t=3

Time or Progression
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Sequential Data - RNN

Ignore Ignore

RNN  ———>  RNN  ———> -
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The food

Token embedding —
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Linear
Classifier
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Sequential Data - RNN
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Sequential Data - RNN
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Sequential Data - RNN

What if we have sequences of variable lengths, like sentences or videos
that we would like to analyze?

Y1 Y2 ‘ ‘ Y3
o Cn I
| [ 1
X1 X7 ‘ X3

t=1 t=2 t=3

Time or Progression

(I
How would you setup ! qu ! e h=o(wT[ 7]
the model (token ﬂ SIPSEE yE=F(ht) "
embedding, MLP layer) mdllEa i
W m | %o u 64
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Sequential Data - RNN

f—

“I 3

Linear
Classifier

T

h =Sum(...)
h;
h;
RNN —> RNN e
T hy T h;
The food

RNN

good
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Sequential Data - RNN

Image Captioning
* Given an image, produce a sentence describing its contents

* Inputs: Image feature (from a CNN)
e Outputs: Multiple words (let’s consider one sentence)

: The dog is hiding
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Sequential Data - RNN

Image Captioning

The dog
Linear | Linear
Classifier | Classifier
Thz Th3
RNN > RNN —> RNN N
T hl hZ h3

“Arun | -
67



Sequential Data - RNN

Y = fi(x;Wl)
¥, =L W,)
s C =Loss(y,,Ysr)
., dC dC
" Find oW, oW,
folyat; W)) dC _[ 9C | 9y,
ow, | dy, \ IW,
y1!
oC _(aC )y, )
f1(x; W) oW, \ dy, )\ W,
I :fac](ayz\[ayl
\ayz ayl) W,
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Sequential Data - RNN

ﬂL

* Largest singular value > 1 - Exploding gradients

* Slight error in the late time steps causes drastic updates in the early time
steps = Unstable learning

e Largest singular value < 1 = Vanishing gradients

* Gradients passed to the early time steps is close to 0. 2 Uninformed
correction

Any other problem with RNN?

69



Sequential Data - RNN

Input — Output Scenarios

!

Single - Single Feed-forward Network

Single - Multiple > > > Image Captioning

Multiple - Single > > > Sentiment Classification

Multiple - Multiple > > > > > Translation
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Sequential Data - Transformer
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Sequential Data - Transformer

Think of YouTube.

First you enter your Query in the search bar. Then your Query is compared
against a set of Keys (in this case, video titles, tags and descriptions etc. within the
YouTube database). After this, YouTube proceeds to retrieve the videos that best

match your Query. These video results are referred to as Values.

Key Value Query

| would like to taste the local food in France.
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Sequential Data - Transformer

| would like to taste the local food in France.

Q = XW,

I would like o taste

llllll

the  local

K = XW

fopd in France

h

h

V =XW,
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Sequential Data - Transformer
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Sequential Data - Transformer

The scaled dot product attention allows a network to attend over a sequence.
However, often there are multiple different aspects a sequence element wants to
attend to, and a single weighted average is not a good option for it. This is why we
extend the attention mechanisms to multiple heads

Multihead(Q, K, V) = Concat(head,,. .., head; )W
where head; = Attentiun{QWF, KWX vw}))

Multi-Head Attention

Caoncat
i W2, € RDx& WK e R4 WY € RP*4: and WO € R dms

Scaled Dot-Product J& h
Attention
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Sequential Data - Transformer

| would like to taste the local food in France.

Q=XW, K=XWy V=XW,

Self-Attention Causal-Attention
Attention weight between the tokens In the row for corresponding to “Life",
corresponding to “Life” and “short” mask out all words that come after “Life"
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Sequential Data - Transformer

FFN[I] = max[ﬂ,:rwl + b )W3 + bs
Encoder ¢ = LayerNorm(z + FFN(z))

—
4 I "
'-"I Add & Norm ] Layer Normalization Batch/Power Normalization
Feed N alize across
Forward Siga scronsoall ini-batch for a singlé
) a_;dresﬁf sin y feature
il F FotIo AR AR
Attenton
. - e
Paositic _J-I‘:_ﬂ-ﬂ ) @( o @a%;\‘
Encoding C ; E{. L

- [
Inputs P =g Zﬂ’i

Input
Embedding
1 o : Jl 1
o =

77



Sequential Data - Transformer

Cross-attention

he threw me
4 A

Keys and values: Encoder
Queries: Decoder

Q000
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Sequential Data - Transformer

Multi-Attention

Self-Attention

Sentiment Analysis

Causal-Attention

Next-token
Prediction

Cross-Attention

Translation
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Sequential Data - Transformer

The teacher told the student that he was brilliant.

The student told the teacher that he was brilliant.

Two sentences using exactly the same tokens but end

up with very different meaning
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Sequential Data - Transformer

N O U s N = O

= = = = O O O O
= = O O = = O O

O B, O B O = O

10 :
11 :
12 :
13 :
14 .
15 :

= = = = OO0 O O O
= = O O = = O O

R Ok O = O = O
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Sequential Data - Transformer

P (k,21) = sin (

P(k,21+ 1) = cos(

Sequ.e.\r\ce.

am

Robot —»

n2i/d

n2i/d

Index
of token,

k

0

3

)

)

k: Position of an object in the input sequence,

d: Dimension of the output embedding space

Positional Encoding
Makrix with d=4, n=100

=0

Poo=sin(0)
=0

P1o=sin(1/1)
=0.84

P2o=sin(2/1)
= 0.91

P3o=sin(3/1)
= 0.14

L=0 i=1 i=1
Po1=cos(0) Po2=sin(0) Pos=cos(0)

=1 =0 =1
P11=cos(1/1) P12=sin(1/10) P13z=cos(1/10)

= 0.54 = 0.10 =1.0

P21=cos(2/1)
= -0.42

P2o=sin(2/10) P23=cos(2/10)
= 0.20 = 0.98

P31=cos(3/1)
= -0.99

P32=sin(3/10) Pas3=cos(3/10)
= 0.30 = 0.96
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Sequential Data — Vision Transformer

Vision Transformer (ViT)

MLP
Head

Transformer Encoder

\
it - @9 0 DD @) ¢ @.

Extra learnable [

[class] embedding Lmear ngectmn nt F]attf:ned Patches

SRR | [T [ |
ﬁg—-!lﬂﬁﬁnﬁﬁﬂ

Transformer Encoder

) A
Lx (:)I

Multi-Head
Attention

11}

Norm ]

Embedded
Patches
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Sequential Data — GPT Transformer

~

Output

I

Softmax

3

Fully-connected

LayerNorm

GPT Block #L

]
i

GPT Block #1

b

Dropout

3

Positional A
Encoding

Embedding

Block Output

]

Input

D

p

Dropout

Fully-connected

~

\
Multi-head

Attention

Module g,

4

LayerNorm

4

Block Input
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Sequential Data - Transformer

Output Token
Vectors

Token Classification Head

%I Fg %I W

I

FENN

[

Decoder Block

?

l

Decoder Block

Layer Norm

(

Decoder Block

Posmon Embeddlng

Input Token
Vectors

© © o @

T
©F
I

Masked Self-Attention

[ | [ |

+

Layer Norm

A
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Sequential Data - Transformer

Raw Text
LLMs are cool.
Tokenized Text L
{ LLM ][ “Hs ][ are ][ cool ][
Raw Text
LLMs are cool.
Tokenized Text ¢

/Vocabulary \[ M J # ) ae ) o

LLM ][ | are } l

cool

L F
yet #ot [ P [ 1 1] 1 | 0 (T
wiu | tran ] [ I-| Token Embedding Layer [T—J

ap

tan

—- < @0 ol ome
) | (= A S (S

H(_\f_\f_\
(

;
N ) ’
.
go me l
J\ J ’,

[

=

[

[

[ ' () ) (=) ) [
k 5 / LLM  #s are  cool ;




Sequential Data - Transformer

Position Embeddings

| | |

Position 0 Position 1 I Position 2 Position 3

Token Embeddings
[ 1 [ [ |y | [ ] ] |

LLMs are awesome
A

Token Embedding
Layer Lookup

Tokenized Text T

DLED T ) (D

Raw Text T

LLMs are awesome.

Position Embeddings With In a Language Model
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Sequential Data — Transformer - Training

Token
Probabilities

Softmax f

pr Training Procedure

Z_f:l e*s

o(z); =

Linear Layer

N
U= i 17— = (TN [TV VR
ou'put Token Embeddings W {ul Uus 'U»N} ‘\C('u) ;lug(n’(u [U k ‘ Ui e))

[T | s pummy sy o ] o ) {

@ : R
[ Decoder-Only Layer ]
T Com>
O T S SR B O T o e e Loss
[ Feed Forward Neural Network | -

i

Predicted Next Token

Decoder-Only
Transformer

Actual Next Token /\

[ + Positional Embeddings J
Input Token Embeddings ]
N | EEEEE O ]

LLM #s are cool
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Sequential Data — Transformer - Inference

Linear Layer Softmax

f
- <
lagelonguagetiodal(UM)  f ‘ ||

Transformer Decoder Block
Token Probabilities

[ Transformer Decoder Block ] l
: Decoding Strategy
P Transformer Decoder Block , l .
s S A" M— e d Next Token
Positional Encoding experience

Ll'__lﬁﬁilﬁ

enhances ur learning

Inference Procedure
(KV cache)
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Sequential Data — Transformer - Inference

Probability Distribution
over the next token (sub-word)

—-‘l 0.31 ]Engineer
L 03 | Doctor
. 0.28 | Lawyer Engineer

| have a dream of being a
prompt +

previously generated tokens m

Chef

Alien

;

[ wyod|y 8ulpodaq ]

Autoregressive Nature

P(ﬁi |K1, X2 s X ?11 ?2* *?i—l)
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Sequential Data — Transformer - Inference

V1 921 3 V4 95 Y5 ¥
will be a paft ofi ;evthing <EOS>
TR TR O
- GPT

E}(Tra nif,formier Dezcoderz)

TN

Deep Learning’ will : be El part of everything
Prompt X; X, : ‘-
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Sequential Data — Transformer - Inference

§i = argmax P(§]%1, Xz, oo Xms §1 925 o0 P11

I have a dream of being a — 0.32 | Engineer
— 0.30 | poctor
LLM ——f 0.28 | Lawyer
Alien

Greedy Decoding

/ Greedy
Decoding

=

\

Pick the highest

p— CNgINCEr

probability token

4

Greedy decoding is computationally efficient and easy to implement.
It does not explore alternative paths that might lead to more globally optimal sequences.
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Sequential Data — Transformer - Inference

the Candidate sequence 1
p=038 N\ Cumulative p=0.8 + [0.78 or 0.67]
) p=0.67 big
[<Sta rt> J
=074 [ ]
p=07 —— cat
' 3 \ / Candidate sequence 2
- ~ Cumulative p=0.7 +[0.74 or 0.7]
T mat
p=0.7 | J

https://medium.com/@Impo/mastering-lims-a-guide-
to-decoding-algorithms-c90a48fd167b
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https://medium.com/@lmpo/mastering-llms-a-guide-to-decoding-algorithms-c90a48fd167b
https://medium.com/@lmpo/mastering-llms-a-guide-to-decoding-algorithms-c90a48fd167b

DNNs

Deep Neural Networks
20% Century Zoo of Neural Network Architectures
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