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Limitations of Decision-Tree and many other model
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Real-world Intuition
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Basic Architecture of Perceptron
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Artificial Neural Networks (ANN)

Basic Idea: A complex non-linear function can be 
learned as a composition of simple processing 

units 

ANN is a collection of simple processing units 

(nodes) that are connected by directed links 
(edges)

– Every node receives signals from incoming edges, performs 

computations, and transmits signals to outgoing edges

– Analogous to human brain where nodes are neurons and 

signals are electrical impulses

– Weight of an edge determines the strength of connection 

between the nodes

Simplest ANN: Perceptron (single neuron)
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Basic Architecture of Perceptron

𝑦 = 𝜎(𝑤T𝑥 + 𝑏)

What happens if

there is no nonlinear

activation?
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Linear Regression

f(x)= 𝑥𝑤 + 𝑏
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Linear Regression
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Linear Regression

Compute the minimum value? How to do it in Math?

Find points where gradient = 0
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Linear Regression

https://www.math.uwaterloo.ca/~hwol

kowi/matrixcookbook.pdf

https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Linear Regression

If the gradient of a function is non-

zero at a point, the direction of the 

gradient is the direction in which 

the function increases most quickly
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Linear Regression
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Local Minimum vs Global Minimum
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Linear Regression

f(x)= 𝑤0𝑥 + 𝑏

Slope

Intercept
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Problem of Linear Regression
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NonLinear Regression
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NonLinear Regression
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NonLinear Regression

What is the problem of

Nonlinear Regression?
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NonLinear Regression

The basis function is all fixed!

Can we learn the basis function?
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NonLinear Regression

What things are learned here?

What things are fixed here?
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NonLinear Regression

1-layer Multi-layer Perceptron
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What things are learned here?

What things are fixed here?

NonLinear Regression
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NonLinear Regression

1-hidden layer Multi-layer Perceptron
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Example

Activations at hidden layers can be viewed as features 

extracted as functions of inputs

Every hidden layer represents a level of abstraction

– Complex features are compositions of simpler features

Number of layers is known as depth of ANN

– Deeper networks express complex hierarchy of features
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Question?
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Linear Regression

𝜎(𝑤T𝑥 + 𝑏)

Analytical

Solution

Gradient

Descent
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Linear Regression

𝑦 = 𝜎(𝑤T𝜙(𝑥) + 𝑏)

y= 𝜎(𝑤T𝑥 + 𝑏)
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Linear Regression
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Linear Regression

y= 𝑤1𝑥 + 𝑤0
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Non-Linear Regression

𝑦 = 𝜎(𝑤T𝜙(𝑥) + 𝑏)

y= 𝜎(𝑤T𝑥 + 𝑏)

𝛻𝐽(𝑊) = −
2

𝑁
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2

𝑁
𝜙 𝑋 𝑇𝜙(𝑋)𝑊

𝑊∗ = 𝜙(𝑋)𝑇𝜙(𝑋) −1𝜙(𝑋)𝑇𝑌
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Multi-NonLinear Regression
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Multi-NonLinear Regression

1-hidden layer Multi-layer Perceptron

𝒘𝒎
𝟏
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Classification
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Classification
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MINIST Dataset
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MLP for MINIST
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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CNN
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Equivariant and Invariant
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Equivariant and Invariant
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Code Demo
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Equivariant and Invariant
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Equivariant and Invariant

Image Convolution is ?
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DNNs
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DNNs
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DNNs
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Sequential Data

The teacher told the student that he was brilliant.

The student told the teacher that he was brilliant.

You read this sentence from left to right and

understand the sentence
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Sequential Data - RNN
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Sequential Data - RNN

Token embedding –

DNA of the Token
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Sequential Data - RNN
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Sequential Data - RNN
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Sequential Data - RNN

How would you setup

the model (token

embedding, MLP layer)
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Sequential Data - RNN
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Sequential Data - RNN
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Sequential Data - RNN



68

Sequential Data - RNN
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Sequential Data - RNN

Any other problem with RNN?
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Sequential Data - RNN
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Sequential Data - Transformer

Key  Value  Query
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Sequential Data - Transformer

Key  Value  Query
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Sequential Data - Transformer
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Sequential Data - Transformer
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Sequential Data - Transformer

The scaled dot product attention allows a network to attend over a sequence. 

However, often there are multiple different aspects a sequence element wants to 

attend to, and a single weighted average is not a good option for it. This is why we 

extend the attention mechanisms to multiple heads
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Sequential Data - Transformer

Causal-AttentionSelf-Attention
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Sequential Data - Transformer
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Sequential Data - Transformer

Cross-attention
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Sequential Data - Transformer

Multi-Attention

Cross-AttentionSelf-Attention Causal-Attention

Sentiment Analysis Next-token

Prediction

Translation
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Sequential Data - Transformer

The teacher told the student that he was brilliant.

The student told the teacher that he was brilliant.

Two sentences using exactly the same tokens but end

up with very different meaning
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Sequential Data - Transformer
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Sequential Data - Transformer
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Sequential Data – Vision Transformer
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Sequential Data – GPT Transformer
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Sequential Data - Transformer
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Sequential Data - Transformer



87

Sequential Data - Transformer
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Sequential Data – Transformer - Training

Training Procedure
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Sequential Data – Transformer - Inference

Inference Procedure

(KV cache)
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Sequential Data – Transformer - Inference

Autoregressive Nature



91

Sequential Data – Transformer - Inference
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Sequential Data – Transformer - Inference

Greedy decoding is computationally efficient and easy to implement.

It does not explore alternative paths that might lead to more globally optimal sequences.
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Sequential Data – Transformer - Inference

https://medium.com/@lmpo/mastering-llms-a-guide-

to-decoding-algorithms-c90a48fd167b

https://medium.com/@lmpo/mastering-llms-a-guide-to-decoding-algorithms-c90a48fd167b
https://medium.com/@lmpo/mastering-llms-a-guide-to-decoding-algorithms-c90a48fd167b
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DNNs
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