Data Mining: Introduction

Lecture Notes for Chapter 1 Data Mining

https://ml-graph.github.io/winter-2025/

Yu Wang, Ph.D. <u>yuwang@uoregon.edu</u> Assistant Professor Computer Science University of Oregon CS 453/553 – Winter 2025

Course Lecture is very heavily based on "Introduction to Data Mining" by Tan, Steinbach, Karpatne, Kumar

Self-introduction

Yu (Jack) Wang You

Intro

I learned to make Nashville Hot Chicken while living in Nashville. When I moved to Eugene I tried several local places selling "Nashville Hot" but none of it reminded me of Nashville. So I opened Pyre to serve up traditional Nashville Hot Chicken.

Self-introduction

Our lab is actively recruiting!

- Data Mining and Machine Learning
- Graph Machine Learning
- Agentic AI
- Spatial Temporal Learning
- AI/ML Application:

Information Retrieval/Science/Cyber-security

Large-scale Data is Everywhere!

- There has been enormous data growth in both commercial and scientific databases due to advances in data generation and collection technologies
- New mantra
 - Gather whatever data you can whenever and wherever possible.
- Expectations
 - Gathered data will have value either for the purpose collected or for a purpose not envisioned.
- Model can save the data
 - LLM3 70B
 - Google vs ChatGPT
 - RAG

E-Commerce

Traffic Patterns

Social Networking: Twitter

Sensor Networks

Computational Simulations

Why Data Mining? Commercial Viewpoint

- Lots of data is being collected and warehoused
 - 1,000 terabytes,
 Web data 1,000,000,000,000= bytes
 - Google has Peta Bytes of web data
 - Facebook has billions of active users
 - purchases at department/ grocery stores, e-commerce
 - Amazon handles millions of visits/day
 - Bank/Credit Card transactions
- Computers have become cheaper and more powerful
- Competitive Pressure is Strong
 - Provide better, customized services for an edge (e.g. in Customer Relationship Management)

Why Data Mining? Scientific Viewpoint

- Data collected and stored at enormous speeds
 - remote sensors on a satellite
 NASA EOSDIS archives over petabytes of earth science data / year
 - telescopes scanning the skies
 Sky survey data
 - High-throughput biological data
 - scientific simulations
 - terabytes of data generated in a few hours
- Data mining helps scientists
 - in automated analysis of massive datasets
 - In hypothesis formation

Sky Survey Data

Gene Expression Data

Great opportunities to improve productivity in all walks of life

McKinsey Global Institute

Big data: The next frontier for innovation, competition, and productivity.

Big data—a growing torrent

\$600 to buy a disk drive that can store all of the world's music

5 billion mobile phones in use in 2010

30 billion pieces of content shared on Facebook every month

40% projected growth in global data generated per year vs. 5% growth in global

IT spending

235 terabytes data collected by the US Library of Congress in April 2011

> 15 out of 17 sectors in the United States have more data stored per company than the US Library of Congress

\$300 billion potential annual value to US health care – more than

Big data—capturing its value

double the total annual health care spending in Spain

€250 billion potential annual value to Europe's public sector administration—more than GDP of Greece

\$600 billion potential annual consumer surplus from using personal location data globally

> 60% potential increase in retailers' operating margins possible with big data

> > more data-savvv manager

needed to take full advantage

of big data in the United States

140,000–190,000 more deep analytical talent positions, and

Great opportunities to improve productivity in all walks of life

Great Opportunities to Solve Society's Major Problems

Improving health care and reducing costs

Finding alternative/ green energy sources

CCCma/A2a January to January Mean Temperature (degrees C) 2080s relative to 1961-90

Reducing hunger and poverty by increasing agriculture production

What is Data Mining?

Many Definitions

- Non-trivial extraction of implicit, previously unknown and potentially useful information from data
- Exploration & analysis, by automatic or semi-automatic means, of large quantities of data in order to discover meaningful patterns

Origins of Data Mining

- Draws ideas from machine learning/AI, pattern recognition, statistics, and database systems
- Traditional techniques may be unsuitable due to data that is
 - Large-scale
 - High dimensional
 - Heterogeneous
 - Complex
 - Distributed

 A key component of the emerging field of data science and datadriven discovery

Data Mining Tasks

Prediction Methods

 Use some variables to predict unknown or future values of other variables.

Rent Prediction

- Description Methods
 - Find human-interpretable patterns that describe the data.

The larger the apartment, the higher the price

From [Fayyad, et.al.] Advances in Knowledge Discovery and Data Mining, 1996

Data Mining Tasks ...

Predictive Modeling: Classification

 Find a model for class attribute as a function of the values of other attributes
 Model for predicting credit

Class

				01033
Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Graduate	5	Yes
2	Yes	High School	2	No
3	No	Undergrad	1	No
4	Yes	High School	10	Yes

Classification Example

Tid	Employed	Level of Education	# years at present address	Credit Worthy
1	Yes	Graduate	5	Yes
2	Yes	High School	2	No
3	No	Undergrad	1	No
4	Yes	High School	10	Yes

Tid	Employed	Level of Education	# years at present address	Credit Worthy			
1	Yes	Undergrad	7	?			
2	No	Graduate	3	?			
3	Yes	High School	2	?			
	Test						
			S	et			

Examples of Classification Task

- Classifying credit card transactions as legitimate or fraudulent
- Classifying land covers (water bodies, urban areas, forests, etc.) using satellite data
- Categorizing news stories as finance, weather, entertainment, sports, etc
- Identifying intruders in the cyberspace
- Predicting tumor cells as benign or malignant
- Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil

Classification: Application 1

Fraud Detection

Goal: Predict fraudulent cases in credit card transactions.

– Approach:

- Use credit card transactions and the information on its account-holder as attributes.
 - When does a customer buy, what does he buy, how often he pays on time, etc
- Label past transactions as fraud or fair transactions. This forms the class attribute.
- Learn a model for the class of the transactions.
- Use this model to detect fraud by observing credit card transactions on an account.

Regression

- Predict a value of a given continuous valued variable based on the values of other variables, assuming a linear or nonlinear model of dependency.
- Extensively studied in statistics, neural network fields.
- Examples:
 - Predicting sales amounts of new product based on advetising expenditure.
 - Predicting wind velocities as a function of temperature, humidity, air pressure, etc.
 - Time series prediction of stock market indices.

Clustering

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Applications of Cluster Analysis

Understanding

- Custom profiling for targeted marketing
- Group related documents for browsing
- Group genes and proteins that have similar functionality
- Group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

Use of K-means to partition Sea Surface Temperature (SST) and Net Primary Production (NPP) into clusters that reflect the Northern and Southern Hemispheres.

Courtesy: Michael Eisen

Clustering: Application 2

- Document Clustering:
 - Goal: To find groups of documents that are similar to each other based on the important terms appearing in them.
 - Approach: To identify frequently occurring terms in each document. Form a similarity measure based on the frequencies of different terms. Use it to cluster.

Enron email dataset

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Rules Discovered: {Milk} --> {Coke} {Diaper, Milk} --> {Beer}

Association Analysis: Applications

- Market-basket analysis
 - Rules are used for sales promotion, shelf management, and inventory management
- Telecommunication alarm diagnosis
 - Rules are used to find combination of alarms that occur together frequently in the same time period
- Medical Informatics
 - Rules are used to find combination of patient symptoms and test results associated with certain diseases

Association Analysis: Applications

An Example Subspace Differential Coexpression Pattern from lung cancer dataset Three lung cancer datasets [Bhattacharjee et a 2001], [Stearman et al. 2005], [Su et al. 2007]

Enriched with the TNF/NFB signaling pathway which is well-known to be related to lung cancer P-value: 1.4*10⁻⁵ (6/10 overlap with the pathway)

[Fang et al PSB 2010]

Deviation/Anomaly/Change Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion Detection
 - Identify anomalous behavior from sensor networks for monitoring and surveillance.
 - Detecting changes in the global forest cover.

Motivating Challenges

Scalability

- High Dimensionality
- Heterogeneous and Complex Data
- Data Ownership and Distribution
- Non-traditional Analysis

Data Mining in Modern Era

- LLM is like a human agent
- Neural-Symbolic Harmonization
- If you want to choose the career in DS/MLE, become very familiar/deep in your Statistics/ML rather than tooluser/leetcode-lover
- Or become a domain-expert (symbolic knowledge to the extreme case) and control LLM to help you do domain problem

Data Mining in Modern Era

OpenAl cofounder Ilya Sutskever says the way Al is built is about to change

Ilya Sutskever. Photo by JACK GUEZ/AFP via Getty Images

/ "We've achieved peak data and there'll be no more," OpenAl's former chief scientist told a crowd of Al researchers.

By Kylie Robison, a senior AI reporter working with The Verge's policy and tech teams. She previously worked at Fortune Magazine and Business Insider.

Dec 13, 2024, 4:34 PM PST

Any Question?

- 1. "Judge a man by his questions rather than by his answers."
 - Voltaire
- "If I had an hour to solve a problem, I'd spend 55 minutes thinking about the problem and 5 minutes thinking about solutions."
 - Albert Einstein
- 3. "The art and science of asking questions is the source of all knowledge."
 - Thomas Berger
- 4. "Asking the right questions takes as much skill as giving the right answers."
 - Robert Half
- 5. "The wise man doesn't give the right answers, he poses the right questions."
 - Claude Lévi-Strauss
- 6. "Great questions make great companies."
 - Peter Drucker

Course Description

Welcome to the fascinating field of data mining, a discipline at the intersection of computer science, statistics, and intelligence! Throughout this course, we'll explore various data mining techniques, from regression to classification to clustering to association analysis. You'll learn how to prepare data, select appropriate algorithms, and interpret results. Real-world examples and case studies will illustrate the practical applications of data mining across diverse industries.

Students will complete two quizzes, a team-based (optional) course project and paper presentation.

Coding notebooks will be provided when necessary for some important topics.

Goals:

- Broad overview of Data Mining
- Basic Data Mining Knowledge/Algorithms, Data Processing Tool
- Very classic Data Mining Code
- Master real-world GML/DM applications

Requirements:

- Little Knowledge in ML
- Basic linear algebra, probability and statistics, and calculus
- Programming Python
- Coding PyTorch

Times:

- Classes: Monday/Wednesday 10:00-11:20 am, 166 LA
- Office hours: Friday 4:00-5:00 pm PST, other time by appointment
- Zoom: https://uoregon.zoom.us/j/4052006678

Components:

Course Assessment and Grading Scale

Category	CS-453 (%)	CS-553 (%)
Quzz 1	20%	15%
Quzz 2	20%	15%
Project	40%	45%
Participation	5%	5%
Paper Presentation	15%	20%
Overleaf Bonus	5%	5%

Quiz:

- Test the basic knowledge
- Do not be Afraid
- As long as you understand the content, you will be good

Participation:

- Expected to be on-site
- But allow virtual attend upon request
- But still I do not have any right to force you to attend onsite ③

Project:

- Test the basic knowledge
- Do not be Afraid
- As long as you understand the content, you will be good

Participation:

- Expected to be on-site
- But allow virtual attend upon request
- But still I do not have any right to force you to attend onsite ③

Paper Presentation (Why we need?):

1. Introduction and Background – What is the general impact and background of the topic?

2. Motivation and Problem – What is the core research problem and why do we study it?

3. Related Work and Challenges – How did previous works on this problem and what are some challenges?

4. Proposed Solutions/Methods and Rationale – What are the proposed methods/techniques and why propose them? What specific reasons that solving this problem would require these proposed methods/techniques

5. Experimental Setting, Results and Analysis – What experiments are designed to verify the proposed method? How are results being discussed and analyzed? Are there any interesting findings?

6. Conclusion and Future Work

Project will Release Soon!

EVENT	DATE	DESCRIPTION	COURSE MATERIAL	Lecture	02/03/2025 Monday	Artificial Neural Networks 1	Course Materials:
Lecture	01/06/2025 Monday	Overview Syllabus	Course Materials: • Slides	Exam	02/03/2025 16:00 Monday	Quzz 1	Topics: • TBD
Lecture	01/08/2025 Wednesday	Introduction	Course Materials: • Slides	Lecture	02/05/2025 Wednesday	Artificial Neural Networks 2	Course Materials: • Slides
Paper Presentation	01/12/2025 04:30 Sunday	Topic of Paper Release.		Lecture	02/10/2025 Monday	Rule-based Classifier	Course Materials: • Slides
Assignment	01/12/2025 Sunday	Project released!	[Project]	Lecture	02/12/2025 Wednesday	Nearest Neighbor Classifiers	Course Materials: • Slides
Lecture	01/13/2025 Monday	Understanding Data	Course Materials: • Slides	Lecture	02/17/2025 Monday	Cluster Analysis 1	Course Materials: • Slides
Lecture	01/15/2025 Wednesday	Understanding of Data	Course Materials: • Slides	Lecture	02/19/2025 Wednesday	Cluster Analysis 2	Course Materials: • Slides
Martin Luther King, Jr holiday	01/20/2025 04:30 Monday	Enjoy :)		Lecture	02/24/2025 Monday	Naive Bayes Classifier 1	Course Materials: • Slides
Lecture	01/22/2025 Wednesday	Basics of Classification	Course Materials: • Slides	Lecture	02/26/2025 Wednesday	Naive Bayes Classifier 2	Course Materials: • Slides
Due	01/24/2025 23:59 Friday	Project Proposal Due		Lecture	03/03/2025 Monday	Support Vector Machine	Course Materials: • Slides
Lecture	01/27/2025 Monday	Overfitting	Course Materials: • Slides	Exam	03/03/2025 16:00 Monday	Quzz 2	Topics: • TBD
Lecture	01/29/2025 Wednesday	Decision Trees	Course Materials: • Slides	Lecture	03/10/2025 Monday	Ensemble Methods	Course Materials: • Slides