
Data Mining: Data

Lecture Notes for Chapter 2

Data Mining
https://ml-graph.github.io/winter-2025/

Yu Wang, Ph.D.

yuwang@uoregon.edu

Assistant Professor

Computer Science

University of Oregon

CS 453/553 – Winter 2025

Course Lecture is very heavily based on 

“Introduction to Data Mining” 

by Tan, Steinbach, Karpatne, Kumar

1

https://ml-graph.github.io/winter-2025/


2

Outline

Attributes and Objects

Types of Data

Data Quality

Similarity and Distance

Data Preprocessing



3

What is Data?

Collection of data objects 
and their attributes

An attribute is a property or 
characteristic of an object

– Examples: eye color of a 
person, temperature, etc.

– Attribute is also known as 
variable, field, 
characteristic, dimension, 
or feature

A collection of attributes 
describe an object

– Object is also known as 
record, point, case, sample, 
entity, or instance
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Attribute Values

Attribute values are numbers or symbols assigned to an 
attribute for a particular object

Distinction between attributes and attribute values

– Same attribute can be mapped to different attribute values

◆ Example: height can be measured in feet or meters

– Different attributes can be mapped to the same set of 
values

◆ Example: Attribute values for ID and age are integers

–  But properties of attribute can be different than the 
properties of the values used to represent the attribute
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Types of Attributes 

 There are different types of attributes

– Nominal

◆ Examples: ID numbers, eye color, zip codes

– Ordinal

◆ Examples: rankings (e.g., taste of potato chips on a 

scale from 1-10), grades, height {tall, medium, short}

– Interval

◆ Examples: calendar dates, temperatures in Celsius or 

Fahrenheit.

– Ratio

◆ Examples: length, counts, elapsed time (e.g., time to 

run a race) 
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Properties of Attribute Values 

The type of an attribute depends on which of the 
following properties/operations it possesses:

– Distinctness:   =    

– Order:    <  >   

– Differences are  +  - 
meaningful :  

– Ratios are    *  /
meaningful

– Nominal attribute: distinctness

– Ordinal attribute: distinctness & order

– Interval attribute: distinctness, order & meaningful 
differences

– Ratio attribute: all 4 properties/operations
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Difference Between Ratio and Interval 

Is it physically meaningful to say that a 

temperature of 10 ° is twice that of 5° on 

– the Celsius scale?

– the Fahrenheit scale?

– the Kelvin scale?

Consider measuring the height above average

– If Bill’s height is three inches above average and 

Bob’s height is six inches above average, then 

would we say that Bob is twice as tall as Bill?

– Is this situation analogous to that of temperature?
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 Attribute 
Type 

Description 
 

Examples 
 

Operations 
 

Nominal 
 

Nominal attribute 
values only  

distinguish. (=, ) 

zip codes, employee 
ID numbers, eye 
color, sex: {male, 
female} 

mode, entropy, 
contingency 

correlation, 2 
test 
 

C
a
te

g
o

ri
c
a

l 

Q
u

a
lit

a
ti
v
e
 

 

Ordinal Ordinal attribute 
values also order 
objects.  
(<, >) 

hardness of minerals, 
{good, better, best},  
grades, street 
numbers 

median, 
percentiles, rank 
correlation, run 
tests, sign tests 

Interval For interval 
attributes, 
differences between 
values are 
meaningful. (+, - ) 

calendar dates, 
temperature in 
Celsius or Fahrenheit 

mean, standard 
deviation, 
Pearson's 
correlation, t and 
F tests 

N
u
m

e
ri
c
 

Q
u

a
n

ti
ta

ti
v
e
 

Ratio For ratio variables, 
both differences and 
ratios are 
meaningful. (*, /) 

temperature in Kelvin, 
monetary quantities, 
counts, age, mass, 
length, current 

geometric mean, 
harmonic mean, 
percent variation 

This categorization of attributes is due to S. S. Stevens
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 Attribute 
Type 

Transformation 
 

Comments 
 

C
a

te
g

o
ri

c
a

l 

Q
u

a
lit

a
ti
v
e

 

 
Nominal 
 

Any permutation of values 
 

If all employee ID numbers 
were reassigned, would it 
make any difference? 
 

Ordinal An order preserving change of 
values, i.e.,  
new_value = f(old_value)  
where f is a monotonic function 
 

An attribute encompassing 
the notion of good, better best 
can be represented equally 
well by the values {1, 2, 3} or 
by { 0.5, 1, 10}. 
 

N
u

m
e

ri
c
 

Q
u

a
n

ti
ta

ti
v
e

 Interval new_value = a * old_value + b 
where a and b are constants 

Thus, the Fahrenheit and 
Celsius temperature scales 
differ in terms of where their 
zero value is and the size of a 
unit (degree). 

Ratio new_value = a * old_value 
 

Length can be measured in 
meters or feet. 

 

This categorization of attributes is due to S. S. Stevens
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Any Question?
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Discrete and Continuous Attributes 

Discrete Attribute
– Has only a finite or countably infinite set of values

– Examples: zip codes, counts, or the set of words in a 
collection of documents 

– Often represented as integer variables.   

– Note: binary attributes are a special case of discrete 
attributes 

Continuous Attribute 
– Has real numbers as attribute values

– Examples: temperature, height, or weight.  

– Practically, real values can only be measured and 
represented using a finite number of digits.

– Continuous attributes are typically represented as 
floating-point variables.  



12

Key Messages for Attribute Types

The types of operations you choose should be 
“meaningful” for the type of data you have

– Distinctness, order, meaningful intervals, and meaningful 
ratios are only four (among many possible) properties of data

– The data type you see – often numbers or strings – may not 
capture all the properties or may suggest properties that are 
not present

– Analysis may depend on these other properties of the data

◆ Many statistical analyses depend only on the distribution

– In the end, what is meaningful can be specific to domain
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Important Characteristics of Data

– Dimensionality (number of attributes)
◆ High dimensional data brings a number of
challenges – Curse of Dimensionality

– Sparsity – Recommender Systems
◆ Only presence counts

– Resolution – Time-series Data

◆  Patterns depend on the scale 

– Size

◆ Type of analysis may depend on size of data
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Curse of Dimensionality
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Curse of Dimensionality
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Curse of Dimensionality
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Curse of Dimensionality
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Curse of Dimensionality
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Curse of Dimensionality
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Types of data sets 

Record

– Data Matrix

– Document Data

– Transaction Data

Graph

– World Wide Web

– Molecular Structures

Ordered

– Spatial Data

– Temporal Data

– Sequential Data

– Genetic Sequence Data
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Record Data 

Data that consists of a collection of records, each 
of which consists of a fixed set of attributes 

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Data Matrix 

If data objects have the same fixed set of numeric 

attributes, then the data objects can be thought of as 

points in a multi-dimensional space, where each 

dimension represents a distinct attribute 

Such a data set can be represented by an m by n 

matrix, where there are m rows, one for each object, 

and n columns, one for each attribute

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection 

of y load

Projection 

of x Load

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection 

of y load

Projection 

of x Load



23

Document Data

Each document becomes a ‘term’ vector 

– Each term is a component (attribute) of the vector

– The value of each component is the number of 

times the corresponding term occurs in the 

document. 

Document 1

s
e

a
s
o

n

tim
e

o
u

t

lo
s
t

w
in

g
a

m
e

s
c
o

re

b
a

ll

p
la

y

c
o

a
c
h

te
a

m

Document 2

Document 3

3 0 5 0 2 6 0 2 0 2

0

0

7 0 2 1 0 0 3 0 0

1 0 0 1 2 2 0 3 0
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Transaction Data

A special type of data, where 

– Each transaction involves a set of items.  

– For example, consider a grocery store.  The set of products 
purchased by a customer during one shopping trip 
constitute a transaction, while the individual products that 
were purchased are the items.

– Can represent transaction data as record data 

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
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Graph Data 

Examples: Generic graph, a molecule, and 

webpages 

5

2

1

 2

5

Benzene Molecule: C6H6
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Ordered Data 

Sequences of transactions

An element of 

the sequence

Items/Events
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Ordered Data 

 Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC

CGCAGGGCCCGCCCCGCGCCGTC

GAGAAGGGCCCGCCTGGCGGGCG

GGGGGAGGCGGGGCCGCCCGAGC

CCAACCGAGTCCGACCAGGTGCC

CCCTCTGCTCGGCCTAGACCTGA

GCTCATTAGGCGGCAGCGGACAG

GCCAAGTAGAACACGCGAAGCGC

TGGGCTGCCTGCTGCGACCAGGG



28

Ordered Data

Spatio-Temporal Data

Average Monthly 

Temperature of 

land and ocean
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Data Quality 

Poor data quality negatively affects many data 

processing efforts

Data mining example: a classification model for 

detecting people who are loan risks is built using 

poor data

– Some credit-worthy candidates are denied loans

– More loans are given to individuals that default
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Data Quality …

What kinds of data quality problems?

How can we detect problems with the data? 

What can we do about these problems? 

Examples of data quality problems: 

– Noise and outliers 

– Wrong data 

– Fake data 

– Missing values 

– Duplicate data 
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Noise

For objects, noise is an extraneous object

For attributes, noise refers to modification of original values
– Examples: distortion of a person’s voice when talking on a poor phone 

and “snow” on television screen

– The figures below show two sine waves of the same magnitude and 
different frequencies, the waves combined, and the two sine waves 
with random noise
◆ The magnitude and shape of the original signal is distorted 
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Outliers are data objects with characteristics 

that are considerably different than most of 

the other data objects in the data set

– Case 1: Outliers are 

noise that interferes

with data analysis 

– Case 2: Outliers are 

the goal of our analysis

◆ Credit card fraud

◆ Intrusion detection 

Causes?

Outliers
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Missing Values

Reasons for missing values

– Information is not collected 
(e.g., people decline to give their age and weight)

– Attributes may not be applicable to all cases 
(e.g., annual income is not applicable to children)

Handling missing values

– Eliminate data objects or variables

– Estimate missing values

◆ Example: time series of temperature

◆ Example: census results 

– Ignore the missing value during analysis
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Duplicate Data

Data set may include data objects that are 
duplicates, or almost duplicates of one another

– Major issue when merging data from heterogeneous 
sources

Examples:
– Same person with multiple email addresses

Data cleaning
– Process of dealing with duplicate data issues

When should duplicate data not be removed?
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Similarity and Dissimilarity Measures

Similarity measure

– Numerical measure of how alike two data objects 

are.

– Is higher when objects are more alike.

– Often falls in the range [0,1]

Dissimilarity measure

– Numerical measure of how different two data 

objects are 

– Lower when objects are more alike

– Minimum dissimilarity is often 0

– Upper limit varies

Proximity refers to a similarity or dissimilarity



36

Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity 

between two objects, x and y, with respect to a single, simple 

attribute.
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Euclidean Distance

Euclidean Distance

   

where n is the number of dimensions (attributes) 
and xk and yk are, respectively, the kth attributes 
(components) or data objects x and y.

 Standardization is necessary, if scales differ.



38

Euclidean Distance

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y

p1 0 2

p2 2 0

p3 3 1

p4 5 1

Distance Matrix

p1 p2 p3 p4

p1 0 2.828 3.162 5.099

p2 2.828 0 1.414 3.162

p3 3.162 1.414 0 2

p4 5.099 3.162 2 0
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Minkowski Distance

Minkowski Distance is a generalization of 
Euclidean Distance

   

   Where r is a parameter, n is the number of 
dimensions (attributes) and xk and yk are, 
respectively, the kth attributes (components) or data 
objects x and y.
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Minkowski Distance: Examples

r = 1.  City block (Manhattan, taxicab, L1 norm) 
distance. 

– A common example of this for binary vectors is the 
Hamming distance, which is just the number of bits that 
are different between two binary vectors

r = 2.  Euclidean distance

Do not confuse r with n, i.e., all these distances are 
defined for all numbers of dimensions.
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Common Properties of a Distance

Distances, such as the Euclidean distance, 
have some well known properties.

1. d(x, y)  0   for all x and y and d(x, y) = 0 if and 
only if  x = y.

2. d(x, y) = d(y, x)   for all x and y. (Symmetry)

3. d(x, z)  d(x, y) + d(y, z)   for all points x, y, and z.  
(Triangle Inequality)

 where d(x, y) is the distance (dissimilarity) 
between points (data objects), x and y.

A distance that satisfies these properties 
is a metric
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Common Properties of a Similarity

Similarities, also have some well known 
properties.

1. s(x, y) = 1 (or maximum similarity) only if x = y. 
(does not always hold, e.g., cosine)

2. s(x, y) = s(y, x)   for all x and y. (Symmetry)

 where s(x, y) is the similarity between points (data 
objects), x and y.
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Similarity Between Binary Vectors

Common situation is that objects, x and y, have only 
binary attributes

Compute similarities using the following quantities

 f01 = the number of attributes where x was 0 and y was 1

 f10 = the number of attributes where x was 1 and y was 0

 f00 = the number of attributes where x was 0 and y was 0

 f11 = the number of attributes where x was 1 and y was 1

Simple Matching and Jaccard Coefficients 

 SMC =  number of matches / number of attributes 

                 =  (f11 + f00) / (f01 + f10 + f11 + f00)

 J = number of 11 matches / number of non-zero attributes

     = (f11) / (f01 + f10 + f11) 



44

SMC versus Jaccard: Example

x =  1 0 0 0 0 0 0 0 0 0     

y =  0 0 0 0 0 0 1 0 0 1 

f01 = 2   (the number of attributes where x was 0 and y was 1)

f10 = 1   (the number of attributes where x was 1 and y was 0)

f00 = 7   (the number of attributes where x was 0 and y was 0)

f11 = 0   (the number of attributes where x was 1 and y was 1)

 

SMC = (f11 + f00) / (f01 + f10 + f11 + f00)

   = (0+7) / (2+1+0+7) = 0.7 

J = (f11) / (f01 + f10 + f11) = 0 / (2 + 1 + 0) = 0 
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Cosine Similarity

 If d1 and d2 are two document vectors, then

             cos( d1, d2 ) =  <d1,d2> / ||d1|| ||d2|| , 

where <d1,d2> indicates inner product or vector dot 
product of vectors, d1 and d2,  and || d || is the   length 
of vector d.  

 Example: 

   d1 =  3 2 0 5 0 0 0 2 0 0 

    d2 =  1 0 0 0 0 0 0 1 0 2 

<d1, d2> =  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5

| d1 || = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481

|| d2 || = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.449

cos(d1, d2 ) = 0.3150
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Correlation measures the linear relationship between objects
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Visually Evaluating Correlation

Scatter plots 

showing the 

similarity from 

–1 to 1.
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Drawback of Correlation

x = (-3, -2, -1, 0, 1, 2, 3)

y = (9, 4, 1, 0, 1, 4, 9)

yi = xi
2

mean(x) = 0, mean(y) = 4

std(x) = 2.16, std(y) = 3.74

corr = (-3)(5)+(-2)(0)+(-1)(-3)+(0)(-4)+(1)(-3)+(2)(0)+3(5) / ( 6 * 2.16 * 3.74 )

            = 0
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Correlation vs Cosine vs Euclidean Distance

Compare the three proximity measures according to their behavior 

under variable transformation

– scaling: multiplication by a value

– translation: adding a constant

Consider the example

– x = (1, 2, 4, 3, 0, 0, 0), y = (1, 2, 3, 4, 0, 0, 0)

– ys  = y * 2 (scaled version of y),  yt  = y + 5 (translated version)
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Correlation vs cosine vs Euclidean distance

Choice of the right proximity measure depends on the 

domain

What is the correct choice of proximity measure for the 

following situations?

– Comparing documents using the frequencies of words

◆ Documents are considered similar if the word frequencies are similar

– Comparing the temperature in Celsius of two locations

◆ Two locations are considered similar if the temperatures are similar in 

magnitude

– Comparing two time series of temperature measured in 

Celsius

◆ Two time series are considered similar if their “shape” is similar, i.e., 

they vary in the same way over time, achieving minimums and 

maximums at similar times, etc. 
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General Approach for Combining Similarities

Sometimes attributes are of many different types, 

but an overall similarity is needed.

1: For the kth attribute, compute a similarity, sk(x, y), in 

the range [0, 1].

2: Define an indicator variable, k, for the kth attribute as 

follows:

3. Compute
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Using Weights to Combine Similarities

May not want to treat all attributes the same.

– Use non-negative weights 𝜔𝑘

– 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐱, 𝐲 =
σ𝑘=1
𝑛 𝜔𝑘𝛿𝑘𝑠𝑘(𝐱,𝐲)

σ𝑘=1
𝑛 𝜔𝑘𝛿𝑘

Can also define a weighted form of distance
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