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Background

Neural-Thinking – System 1 Symbolic-Thinking – System 2

• This is intersection

• There are three cars

• One car is turning left, the other car is going straight,

the third car is going straight

• Left should wait for straight
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Neural-Thinking – System 1

• Thinking fast

• Intuitive, human recognition

• Data-driven

• Thinking slow

• Rule-based, theoretical guarantee

• Knowledge-driven
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Probability, Logic, and Neural

Probability - Neural Probability - Logic Logic - Neural



KIND 10

Probability, Logic, and Neural

Probability - Neural Probability - Logic Logic - Neural

• VAEs

• Diffusion

• Policy Gradient

• C = A AND B

A: P(A>=0.5)

B: P(B>=0.5)
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Why Neural-Symbolic Learning?

Digit classification

Digit classification with external

calculation knowledge

+ 8

Benefit of Symbolic Learning on Neural Learning



KIND 12
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Benefit of Symbolic Learning on Neural Learning
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Why Neural-Symbolic Learning?

Benefit of Symbolic Learning on Neural Learning

In the paper Our results

Benefit: more-easy to generalize
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Why Neural-Symbolic Learning?

Benefit of Neural Learning on Symbolic Learning
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Why Neural-Symbolic Learning?

Benefit of Neural Learning on Symbolic Learning
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How Neural-Symbolic Learning?

Symbolic as a kind of Constraints

Symbolic as a kind of Constraints
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How Neural-Symbolic Learning?

Symbolic as a kind of Constraints

Fuzzy Logic

Probability - Logic

Differentiable

Hard Working AND Appropriate Method 

Hard Working OR Appropriate Method 

Hard Working -- Appropriate Method 

Hard Working? Appropriate Method?
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Symbolic as a kind of Constraints

Hard Working AND Appropriate Method 

Hard Working? Appropriate Method?

Success(x) ⇐ HardWorking(x) ∧ AppropriateMethod(x)
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How Neural-Symbolic Learning?

Symbolic as a kind of Constraints

Hard Working AND Appropriate Method 

Hard Working? Appropriate Method?

Success(x) ⇐ HardWorking(x) ∧ AppropriateMethod(x)

Baseline Model Accuracy: 85.00% Logic-Constrained 

Model Accuracy: 95.00% Logic-Constrained Model 

Rule Consistency (probabilities): 74.00% Logic-

Constrained Model Rule Consistency (binary): 80.50%
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How Neural-Symbolic Learning?

Symbolic as a kind of neural program
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