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Background

Who can go first ?

A. The red car
B. The blue van
C. The white car

Neural-Thinking Symbolic-Thinking




Background

Who can go first ?

A. The red car
B. The blue van
C. The white car

Neural-Thinking — System 1 Symbolic-Thinking — System 2

* This is intersection * Left should wait for straight

* There are three cars
* One car is turning left, the other car is going straight,
the third car 1s going straight
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Background

Neural-Thinking — System 1

THE NEW YORK TIMES BESTSELLER

* Thinking fast T H/IN KING,

* Intuitive, human recognition

* Data-driven FAST .,\N;) 5L QA"

Neural-Thinking — System 1 DANIEL

 Thinking slow KAHNEMAN

[ ] Rule_based, theoretical guarantee WINNER OF THE NOBEL PRIZE IN ECONOMICS

“[A] masterpiece . . . This is one of the greatest and most engaging collections of

[ Krlowle dge_driven insights into the human mind | have read” —wisLiaM EAsTERLY, Financial Times



Background

Neural-Thinking — System 1

* Thinking fast
* Intuitive, human recognition

e Data-driven

Neural-Thinking — System 1

* Thinking slow
Are there more trees than
animals?

* Rule-based, theoretical guarantee

* Knowledge-driven




Background

Neural-Thinking — System 1

* Thinking fast
* Intuitive, human recognition

e Data-driven

Neural-Thinking — System 1

* Thinking slow What is the shape of the object

* Rule-based, theoretical guarantee closest to the large cylinder?
* Knowledge-driven



Background

Neural-Thinking — System 1

* Thinking fast
* Intuitive, human recognition

e Data-driven

Neural-Thinking — System 1

* Thinking slow . B s
Will the block tower fall if

* Rule-based, theoretical guarantee the to p block is removed?

* Knowledge-driven




Background

Neural-Thinking — System 1

* Thinking fast

* Intuitive, human recognition
* Data-driven
Neural-Thinking — System 1 | ’ -

* Thinking slow How many blocks are on the
* Rule-based, theoretical guarantee right of the three-level tower?

* Knowledge-driven




Probability, Logic, and Neural
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Probability, Logic, and Neural

‘ PROBABILITY

NEURAL

LOGIC

Probability - Neural Probability - Logic 4 Logic - Neural )

* VAEs « C=AANDB
* Diffusion A: P(A>=0.5)
* Policy Gradient B: P(B>=0.5)




Why Neural-Symbolic Learning?

Benefit of Symbolic Learning on Neural Learning

Digit classification
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Digit classification with external
calculation knowledge




Why Neural-Symbolic Learning?

Benefit of Symbolic Learning on Neural Learning
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Why Neural-Symbolic Learning?

Benefit of Symbolic Learning on Neural Learning

Loss ACEU[’EC}’ Accuracy vs Training Size (Concat vs Modular)
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Benefit: more-easy to generalize




Why Neural-Symbolic Learning? %

Benefit of Neural Learning on Symbolic Learning

Generalization of CNN to Multi-digit Addition

0.8 4
0.6
by
§ 041
0.2 1
0.0
1 2 3
# Digits per Operand
1-digit: GT=9, Pred=9 1-digit: GT=13, Pred=13 1-digit: GT=8, Pred=8
2-digit: GT=111, Pred=11 2-digit: GT=58, Pred=8 2-digit: GT=103, Pred=3

|3 a8 #2 (] 13 90
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Why Neural-Symbolic Learning?

Benefit of Neural Learning on Symbolic Learning

# === Symbolic logic: compute sum from digit logits === Generalization of Symbolic-Neural Model to Multi-digit Addition
def predict_sum_from_digits(logits, num_digits=1): 1.0
= logits.shape(@
probs = F.softmax(logits, dim=2) # (B, 2D, 10) 0
sums =
for b in range(B): 0.8 -
sl, s2 =10, 0 o
for i in range(num_digits): 8
dl = torch.arange(10, device=logits.device) E 07

pl = probs[b, 2%i

d2 = torch.arange(10, device=logits.device)
p2 = probs[b, 2xi+l 0.6 -
expl = (d1 * pl).sum().round().item()
exp2 = (d2 % p2).sum().round().item()

sl = sl *x 10 + expl 0.5 1
s2 = s2 x 10 + exp2
sums.append(int(sl + s2)) 1 2 3
return torch.tensor(sums, device=logits.device) # Digits per Operand
90 + 62 = 152 65 +-3 = 68 39 + 90 = 129 21 + 51 =72




How Neural-Symbolic Learning?

Symbolic as a kind of Constraints

multi-class classification

Symbolic as a kind of Constraints

. Semantic loss  SLoss(T) x—log > [[» [] (1 -p)

XE=TzeX -zeX

* Used as regulariser Loss = Traditional Loss + w.S5Loss




How Neural-Symbolic Learning?

Symbolic as a kind of Constraints

Fuzzy Logic

« AND(a,b) = min(a,b)

- OR(a,b) = max(a,b) % %

* a—b=max(1 - a,b)

1
1 o9 1
I 4e ; I +e*

Hard Working? Appropriate Method?

Hard Working AND Appropriate Method

Probability - Logic Hard Working OR Appropriate Method

Differentiable . .
Hard Working -- Appropriate Method

KIND 7 O




How Neural-Symbolic Learning?

Symbolic as a kind of Constraints

AND(a,b) = min(a,b) Success(x) & HardWorking(x) A AppropriateMethod(x)
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Feature 1 (correlated with HardWorking)

Feature 1 (HardWorking proxy)

# Helper to sample feature given predicate truth
o1 o1 def sample_feature(is_true):
-0 return random.gauss(1.0 if is_true else -1.0, 0.5)

0 5 10 0 B 3 5 70

Hard Working? Appropriate Method? # Generate training data
train_X, train_y = [], []
for i in range(n_train):

# Random truth values for predicates

H = 1 if random.random() < 0.5 else @

M = 1 if random.random() < 0.5 else @

S=1if (H==1 and M == 1) else 0 # Success = H AND M

# Features: correlated with H and M, plus noise

Hard Working AND Appropriate Method

fl

= sample_feature(H)

# featurel

N(+1 or -1)

f2 = sample_feature(M)
f3 = random.gauss(0, 1)
train_X.append([f1, f2, f3]);

# feature2 ~ N(+1 or -1)
# feature3 ~ N(@, 1) noise
train_y.append( [float(S)])
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How Neural-Symbolic Learning?

Symbolic as a kind of Constraints

AND(a,b) = min(a,b)

Success(x) & HardWorking(x) A AppropriateMethod(x)

p_H, p_M, p_S = logic_model(train_X) # forward pass (3 outputs)
# Standard loss on success prediction:

loss_main = criterion(p_S, train_y)

# Logic constraint loss (MSE between p_S and min(p_H, p_M)):

loss_logic = torch.mean((p_S - torch.minimum(p_H, p_M))*x*2)

loss_total = loss_main + loss_logic # combined loss

Hard Working? Appropriate Method?

Baseline Model Accuracy: 85.00% Logic-Constrained
Model Accuracy: 95.00% Logic-Constrained Model
Hard Working AND Appropriate Method Rule Consistency (probabilities): 74.00% Logic-
Constrained Model Rule Consistency (binary): 80.50%
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How Neural-Symbolic Learning?

Symbolic as a kind of neural program
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