Advanced Machine Learning
Neural-Symbolic Thinking

Yu Wang
Assistant Professor
Department of Computer Science
University of Oregon

Knowledge Intelligence for Discovery and Decision-making (KIND) Lab

Background

Who can go first ?

A. The red car
B. The blue van
C. The white car

Neural-Thinking Symbolic-Thinking

Background

Who can go first ?

A. The red car
B. The blue van
C. The white car

Neural-Thinking — System 1 Symbolic-Thinking — System 2

* This is intersection * Left should wait for straight

* There are three cars
* One car is turning left, the other car is going straight,
the third car 1s going straight

KIND e

Background

Neural-Thinking — System 1

THE NEW YORK TIMES BESTSELLER

* Thinking fast T H/IN KING,

* Intuitive, human recognition

* Data-driven FAST .,\N;) 5L QA"

Neural-Thinking — System 1 DANIEL

 Thinking slow KAHNEMAN

[] Rule_based, theoretical guarantee WINNER OF THE NOBEL PRIZE IN ECONOMICS

“[A] masterpiece . . . This is one of the greatest and most engaging collections of

[Krlowle dge_driven insights into the human mind | have read” —wisLiaM EAsTERLY, Financial Times

Background

Neural-Thinking — System 1

* Thinking fast
* Intuitive, human recognition

e Data-driven

Neural-Thinking — System 1

* Thinking slow
Are there more trees than
animals?

* Rule-based, theoretical guarantee

* Knowledge-driven

Background

Neural-Thinking — System 1

* Thinking fast
* Intuitive, human recognition

e Data-driven

Neural-Thinking — System 1

* Thinking slow What is the shape of the object

* Rule-based, theoretical guarantee closest to the large cylinder?
* Knowledge-driven

Background

Neural-Thinking — System 1

* Thinking fast
* Intuitive, human recognition

e Data-driven

Neural-Thinking — System 1

* Thinking slow . B s
Will the block tower fall if

* Rule-based, theoretical guarantee the to p block is removed?

* Knowledge-driven

Background

Neural-Thinking — System 1

* Thinking fast

* Intuitive, human recognition
* Data-driven
Neural-Thinking — System 1 | ’ -

* Thinking slow How many blocks are on the
* Rule-based, theoretical guarantee right of the three-level tower?

* Knowledge-driven

Probability, Logic, and Neural

‘ PROBABILITY

NEURAL

LOGIC

Probability - Neural Probability - Logic Logic - Neural

A B

Probability, Logic, and Neural

‘ PROBABILITY

NEURAL

LOGIC

Probability - Neural Probability - Logic 4 Logic - Neural)

* VAEs « C=AANDB
* Diffusion A: P(A>=0.5)
* Policy Gradient B: P(B>=0.5)

Why Neural-Symbolic Learning?

Benefit of Symbolic Learning on Neural Learning

Digit classification

EIHEC R GQEL? 359 e
. @ —
N
El-B3—s

Digit classification with external
calculation knowledge

Why Neural-Symbolic Learning?

Benefit of Symbolic Learning on Neural Learning

. 18 .
>%—> L= _Z (Ci = k)pi
k=0

b 18
Ll L=-) " (a=hp}
addition([E], [, 8) =1

= 8
8 _ Jok=Jj
;@ . pP=) vl

Why Neural-Symbolic Learning?

Benefit of Symbolic Learning on Neural Learning

Loss ACEU[’EC}’ Accuracy vs Training Size (Concat vs Modular)

3.0 1.0 0 s

DeepProblLog
o

2.5 fﬁ_/-—f“ CNN los 0.8
2.0- / g
0.6 2 06
1.5 <
E 0.4 1

- 0.4 |
1.0 J
CNN |
05/ A oz |
Ay " J |

o / " Ay q Ll TN I 0.2 :‘ —e— Concat (End-to-End)

D_u —#— Modular (Probabilistic)
5000 10000 15000 20000 25000 30000 0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations Training Set Size
In the paper Our results

Benefit: more-easy to generalize

Why Neural-Symbolic Learning? %

Benefit of Neural Learning on Symbolic Learning

Generalization of CNN to Multi-digit Addition

0.8 4
0.6
by
§ 041
0.2 1
0.0
1 2 3
Digits per Operand
1-digit: GT=9, Pred=9 1-digit: GT=13, Pred=13 1-digit: GT=8, Pred=8
2-digit: GT=111, Pred=11 2-digit: GT=58, Pred=8 2-digit: GT=103, Pred=3

|3 a8 #2 (] 13 90

KIND 12 O

Why Neural-Symbolic Learning?

Benefit of Neural Learning on Symbolic Learning

=== Symbolic logic: compute sum from digit logits === Generalization of Symbolic-Neural Model to Multi-digit Addition
def predict_sum_from_digits(logits, num_digits=1): 1.0
= logits.shape(@
probs = F.softmax(logits, dim=2) # (B, 2D, 10) 0
sums =
for b in range(B): 0.8 -
sl, s2 =10, 0 o
for i in range(num_digits): 8
dl = torch.arange(10, device=logits.device) E 07

pl = probs[b, 2%i

d2 = torch.arange(10, device=logits.device)
p2 = probs[b, 2xi+l 0.6 -
expl = (d1 * pl).sum().round().item()
exp2 = (d2 % p2).sum().round().item()

sl = sl *x 10 + expl 0.5 1
s2 = s2 x 10 + exp2
sums.append(int(sl + s2)) 1 2 3
return torch.tensor(sums, device=logits.device) # Digits per Operand
90 + 62 = 152 65 +-3 = 68 39 + 90 = 129 21 + 51 =72

How Neural-Symbolic Learning?

Symbolic as a kind of Constraints

multi-class classification

Symbolic as a kind of Constraints

. Semantic loss SLoss(T) x—log > [[» [] (1 -p)

XE=TzeX -zeX

* Used as regulariser Loss = Traditional Loss + w.S5Loss

How Neural-Symbolic Learning?

Symbolic as a kind of Constraints

Fuzzy Logic

« AND(a,b) = min(a,b)

- OR(a,b) = max(a,b) % %

* a—b=max(1 - a,b)

1
1 o9 1
I 4e ; I +e*

Hard Working? Appropriate Method?

Hard Working AND Appropriate Method

Probability - Logic Hard Working OR Appropriate Method

Differentiable . .
Hard Working -- Appropriate Method

KIND 7 O

How Neural-Symbolic Learning?

Symbolic as a kind of Constraints

AND(a,b) = min(a,b) Success(x) & HardWorking(x) A AppropriateMethod(x)

Training Data Test Data
X x Fail | e Fail
- x 2
5 H
£ 104 { 3 9
o | e @
(
Z . . . o R ° ¢
= X | - X °® 28¢0@ bt [)
4 ! e > . °
g 05 i 5 1 - X e "4 oh 5 ©
& al a s @ .
o £l o [4
< be 8
£
£ 00+] ° 3 °
B x =
x X £ 0
2 ~
kK g
Eosy 2 ;
S * & w
~ X x -1
v x
- R % %
] X X X
&
-2
-15 1 X
1 -15 -1.0 -0.5 0.0 0.5 10 15 2.0 -2 -1 0 1 2

1
I+e

Feature 1 (correlated with HardWorking)

Feature 1 (HardWorking proxy)

Helper to sample feature given predicate truth
o1 o1 def sample_feature(is_true):
-0 return random.gauss(1.0 if is_true else -1.0, 0.5)

0 5 10 0 B 3 5 70

Hard Working? Appropriate Method? # Generate training data
train_X, train_y = [], []
for i in range(n_train):

Random truth values for predicates

H = 1 if random.random() < 0.5 else @

M = 1 if random.random() < 0.5 else @

S=1if (H==1 and M == 1) else 0 # Success = H AND M

Features: correlated with H and M, plus noise

Hard Working AND Appropriate Method

fl

= sample_feature(H)

featurel

N(+1 or -1)

f2 = sample_feature(M)
f3 = random.gauss(0, 1)
train_X.append([f1, f2, f3]);

feature2 ~ N(+1 or -1)
feature3 ~ N(@, 1) noise
train_y.append([float(S)])

KIND

18

How Neural-Symbolic Learning?

Symbolic as a kind of Constraints

AND(a,b) = min(a,b)

Success(x) & HardWorking(x) A AppropriateMethod(x)

p_H, p_M, p_S = logic_model(train_X) # forward pass (3 outputs)
Standard loss on success prediction:

loss_main = criterion(p_S, train_y)

Logic constraint loss (MSE between p_S and min(p_H, p_M)):

loss_logic = torch.mean((p_S - torch.minimum(p_H, p_M))*x*2)

loss_total = loss_main + loss_logic # combined loss

Hard Working? Appropriate Method?

Baseline Model Accuracy: 85.00% Logic-Constrained
Model Accuracy: 95.00% Logic-Constrained Model
Hard Working AND Appropriate Method Rule Consistency (probabilities): 74.00% Logic-
Constrained Model Rule Consistency (binary): 80.50%

KIND 19 O

How Neural-Symbolic Learning?

Symbolic as a kind of neural program

0
@
O
Q | gl |
addition(E] [, 8)

| "- >
'%S

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

