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Summary

1D Gaussian Distribution 2D Gaussian Distribution

ℝ ℝ2

ℝ256×256
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Summary

Probability distribution of the objective based on the observed data

• Machine Learning Methods

o Gaussian Kernel Density Estimation

o Gaussian Mixture Models

• Deep Learning Methods

o Auto-Encoder (AE)

o Variational AE (LLM is actually a VAE)

o Generative Adversarial Network

o Diffusion Model

𝑃(𝑥) 𝑥𝑥𝑖 𝑖=1
𝑁

Good DataGood Model

Using existing function to estimate what you do

not know that can best fit your observation

Using learnable function to estimate what you do

not know that can best fit your observation
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Summary

What is the problem?

Using existing function to estimate what you do not know that can best fit your observation
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Problem?

Three bumps but I just give you 

two different gaussian

I just give you two different 

gaussian.

Using existing function to estimate what you do not know that can best fit your observation

All you know for modeling what you do not know is fixed. But how do 

you know those fixed things is able to model the unknown thing?
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Problem?

What you have is some low-dimensional data

But what you want to model is some high-dimensional data, how it could be?

ℝ1, ℝ2

ℝ256×256

Using existing function to estimate what you do not know that can best fit your observation
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Problem?

What we have: kernel density estimation to estimate low dimensional PDF

What we want: model any data distribution

How to transform any data distribution to low dimensional data?

Someway to transform

Kernel Density Estimation

Transform back
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Observation

A key assumption: high-dimensional data lies on the low-dimensional manifold space
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A key assumption: high-dimensional data lies on the low-dimensional manifold space

Observation
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Summary

Probability distribution of the objective based on the observed data

• Machine Learning Methods

o Gaussian Kernel Density Estimation

o Gaussian Mixture Models

• Deep Learning Methods

o Auto-Encoder (AE)

o Variational AE (LLM is actually a VAE)

o Generative Adversarial Network

o Diffusion Model

𝑃(𝑥) 𝑥𝑥𝑖 𝑖=1
𝑁

Good DataGood Model

Using existing function to estimate what you do

not know that can best fit your observation

Using learnable function to estimate what you do

not know that can best fit your observation

PCA Dimensional Reduction
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𝒘𝟏 = [𝟏, 𝟎]

𝒘𝟐 = [𝟎, 𝟏]
𝒙𝟑 = [𝟑, 𝟒]

𝐜𝐨𝐬𝜃 =
𝑤1
𝑇𝑥3

𝑤1 2 𝑥3 2

𝐜𝐨𝐬𝜃 𝑥3 2 =
𝑤1
𝑇𝑥3
𝑤1 2

= 𝑤1
𝑇𝑥3

PCA - Variance Maximization
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𝐿 𝑤, 𝛼 = 𝑤𝑇𝑆𝑤 + 𝛼 𝑤𝑇𝑤 − 1

∇𝑤𝐿 𝑤, 𝛼 = 2𝑆𝑤 + 2𝛼𝑤 = 0

∇𝑤𝐿 𝑤, 𝛼 = 𝑆𝑤 − 𝜆𝑤 = 0 𝑆𝑤 = 𝜆𝑤

Constrained

Optimization

PCA - Variance Maximization
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PCA - Variance Maximization

𝑆𝑤 = 𝜆𝑤

𝝀𝟏 ≥ 𝝀𝟐 ≥ ⋯ ≥ 𝝀𝑛

𝒘𝟏 ≥ 𝒘𝟐 ≥ ⋯ ≥ 𝒘𝑛

𝒘𝟏
𝑻𝒙𝟏 = 𝝈𝟏

𝒘𝟐
𝑻𝒙𝟏 = 𝝈𝟐

𝒘𝒏
𝑻𝒙𝟏 = 𝝈𝒏

…

𝒘𝟏 = [𝟏, 𝟎]

𝒘𝟐 = [𝟎, 𝟏]
𝒙𝟑 = [𝟑, 𝟒]
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PCA - Variance Maximization
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PCA - Variance Maximization
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PCA - Variance Maximization
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PCA - Variance Maximization
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PCA - Variance Maximization
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Reconstruction Loss for PCA
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Reconstruction Loss for PCA

𝒘 = 𝟏

𝑥(𝑖) ∈ ℝ2∗1 𝑤𝑇 ∈ ℝ1∗2 𝑤 ∈ ℝ2∗1
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Reconstruction Loss for PCA
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PCA to bridge GMM and High-Dimension Data

What we have: kernel density estimation to estimate low dimensional PDF

What we want: model any data distribution

How to transform any data distribution to low dimensional data?

Someway to transform

Kernel Density Estimation

Transform back
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PCA to bridge GMM and High-Dimension Data

Code Demo

http://localhost:8888/lab
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From PCA to Auto-Encoder

Can we add nonlinearity?
Yes, then it becomes

neural network!
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From PCA to Auto-Encoder
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Auto-Encoder
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Auto-Encoder

Input OutputAE
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Auto-Encoder

Input OutputAE

Any problem with this architecture?
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Class-supervised Auto-Encoder
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Class-supervised Auto-Encoder

Input OutputAE
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Problem with Auto-Encoder

Need to estimate the latent distribution post-hoc!
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Problem with Auto-Encoder
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