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Network Centrality

* Which nodes in the graph are “important”?




Network Centrality

Summary

= Graph-theoretic measures

= Basic measures of centrality/prestige
* Mostly from a social perspective

= Path-based
= Closeness, Betweenness, Katz

= Eigenvector-based
» Eigenvector, Katz, PageRank

= Others
= Hubs and Authorities, Goodness and Fairness




Network Centrality — Eigenvector Centrality

Eigenvector Centrality e sonacich, 1972

= Importance of a node depends on the importance
of its neighbors (note this is recursive)
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What is wrong with this type of recursive solution?




Network Centrality — Eigenvector Centrality

Eigenvector Centrality

®" Importance of a node depends on the importance
of its neighbors (note this is recursive)

We can pick some value a < 1




Network Centrality — Eigenvector Centrality

= Importance of a node depends on the importance of its neighbors (note
this is recursive)

J
DA
C. _— — ..C.
L A . 5 Rl |
J
Ac = Ac
0 0 0 0]]01 0.0 Eigen-vector Problem
1 0 0 0}]0.2 0.1
0 1 0 1/(0.5 0.5
1 0 0 oflo3 0.1




Network Centrality — Eigenvector Centrality

Adjacency
Matrix

Al

A Theorem 38.1 (Perron-Frobenius Theorem)

If a matrix A > 0 then,

Moreover if A is also irreducible then,

— A.C We want our centrality
_ value to be positive

4. the eigenvector v associated with the eigenvalue T(A) is strictly positive.

5. there exists no other positive eigenvector v (except scalar multiples of v) associated with 7( A).




Network Centrality — Eigenvector Centrality

Connected Disconnected

2

We can compute centrality in each connected component




Network Centrality — Eigenvector Centrality

Adjacency Ek -2 We want our centrality
Matrix = AC matrix to be positive

If our adjacency matrix is not strongly connected, we
can first partition our graph and only look at those
strongly connected

A Theorem 38.1 (Perron-Frobenius Theorem)

If a matrix A > 0 then,

Moreover if A is also irreducible then,

4. the eigenvector v associated with the eigenvalue T(A) is strictly positive.

5. there exists no other positive eigenvector v (except scalar multiples of v) associated with 7( A).




Network Centrality — Eigenvector Centrality




Network Centrality

Comparing with previous
methods

Degree
Closeness
Betweenness
Eigenvector




PageRank

Google pagerank x & @ Q
Al Images \Videos MNews Shopping Forums Web i More Tools
This search may be relevant to recent activity: pagerank centrality Your Search activity | Feedback

PageRank (PR) is an algorithm used by Google Search to rank

PageRank Algorithm
web pages in their search engine results. It is named after . b
both the term "web page" and co-founder Larry Page. '

PageRank is a way of measuring the importance of website

pages. ‘

Wikipedia
https://en.wikipedia.org » wiki > PageRank i
PageRank - Wikipedia

W

@ About featured snippets + M Feedback

People also ask : PageRank :

. .
What is PageRank centrality? M PageRank is an algorithm used by Google Search to rank

web pages in their search engine results. It is named after

Is PageRank still a ranking signal for Google? v both the term "web page” and co-founder Larry Page.
PageRank is a way of measuring the importance of website
How do you calculate PageRank? v pages. Wikipedia
Feedback
What replaced PageRank? v
Feedback

Scholarly articles for pagerank
Inside pagerank - Bianchini - Cited by 747

A survey on PageRank computing - Berkhin - Cited by 620

Efficient computation of PageRank - Haveliwala - Cited by 571

Ranking algorithm to determine the
Importance of the webpage




PageRank

Ranking in Directed Graph

= [terative Update Method
= (similarity to Eigenvector centrality)
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Issue:
Keeps getting larger...




PageRank — Absorbing and Sourcing Node Issue

Ranking Directed Graph Problems

= Absorbing Nodes
= Source Nodes
= Cycles

cttl = Act
c® = some initial vector

Is there any stable solution?




PageRank — Absorbing and Sourcing Node Issue

Absorbing Nodes

* Keeps receiving
centrality from
node 11 and
does not pass it
along

* Keeps increasing




PageRank — Absorbing and Sourcing Node Issue

Source Nodes

= Node i initially passes
its centrality to node 5

= Node i has no incoming
links so centrality goes
to0




PageRank — Absorbing and Sourcing Node Issue

Source Nodes

* Node i initially passes
its centrality to node 5

* Node i has no incoming
links so centrality goes
to 0O

= Node 5 only receives
centrality from node i,
so it also then drops to
0 once node iis 0

= Cascading problem




PageRank — Absorbing and Sourcing Node Issue

How to remove absorbing or sourcing node?
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PageRank — Absorbing and Sourcing Node Issue

How to remove absorbing or sourcing node?

A=A+s'e
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PageRank — Strongly Connected Component Issue

Hugging Face Models Datasets Spac¢

How to address strongly connected issue?

= < Back to Articles

_Introduction to Graph Machine
Learning

Published January 3, 2023
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PageRank — Stochastic Issue
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PageRank — Collecting these two issues together %

PageRank

Transition matrix: °
P=D7A O

11
Stochastic matrix: ° ° °

PPt OLO

PageRank matrix:

T
P/ = aP'+(1—a)%




PageRank — Collecting these two issues together

Perron-Frobenius Theorem

= Given a matrix that is
= Stochastic (non-negative and rows sum to one)
= [rreducible (i.e., strongly connected)

Then

We have a solution / cttl = Act

7P =7, where ||7||; =1

i.e, a stationary distribution of Markov chain




PageRank

ct+1 — Act
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c2=A"c!
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Any Question?
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