

Statistical Graph Model

Barabasi-Albert Configuration Models

Yu Wang, Ph.D. Assistant Professor Computer and Information Science University of Oregon CS 410/510 - Fall 2024

Statistical Graph Model – Random Graph Models – G(n, p)

In G(n, p), a graph is constructed by connecting labeled nodes randomly. Each edge is included in the graph with probability p.

How many steps should we consider?

$$C_n^2 = \frac{n(n-1)}{2}$$

G(n, p): a random graph with totally n nodes and among each pair of nodes, the edge is added with the probability of p

What is the expectation of the number of edges?

$$\overline{m} = p \frac{n(n-1)}{2}$$

Idea:

Randomly reconnect some links

Watts and Strogatz 1998.

Single parameter model

- Go between regular lattice and random graph
- Start with regular lattice of n nodes, k edges per vertex where k<<n
- Randomly reconnect with other nodes with probability p
 - Creates pnk/2 "long distance" connections
- p=0 regular lattice and p=1 random graph

- What does a real graph look like?
- What is normal/abnormal?
- Are real graphs random?
- Real Networks are growing!
 - Evolving with time
 - New nodes and edges
 - Citation/collaboration networks
 - Web
 - Social networks

Growing random graph

Simple model with no nodes/edges being removed, only adding nodes/edges

Stochastic growth model:

- Starting point
 - t = 0, n_o unconnected nodes
- Growth
 - On every time step $t = \{1,2,3,...\}$ we add a new node with $m \le n_0$ edges
 - i.e., at time t = i the new node will have degree $k_i = m$
- Attachment
 - Form m edges with nodes existing in the graph uniformly at random
 - Probability to attach to any node already in the network

$$\Pi(k_i) = \frac{1}{n_0 + t - 1}$$

Example:

```
t = 11 with n_0 = 3
```

There are an initial ${\rm n_0}=3$ nodes and already t-1=10 other new nodes added, so $\frac{1}{13}$

Stochastic growth model:

- Starting point
 - t = 0, n_o unconnected nodes
- Growth
 - On every time step $t = \{1, 2, 3, ...\}$ we add a new node with $m \le n_0$ edges
 - i.e., at time t = i the new node will have degree $k_i = m$
- Attachment
 - Form m edges with nodes existing in the graph uniformly at random
 - Probability to attach to any node already in the network

$$\Pi(k_i) = \frac{1}{n_0 + t - 1}$$

Expected *i*-node degree at time *t* is
$$< k_i(t) >$$

 $k_i(t) = m + \frac{m}{n_0 + i} + \frac{m}{n_0 + i + 1} + \dots + \frac{m}{n_0 + t - 1}$

Initial m edges

As time goes by new nodes are added and pick m nodes to connect to...

9

$$k_{i}(t) = m + \frac{m}{n_{0} + i} + \frac{m}{n_{0} + i + 1} + \dots + \frac{m}{n_{0} + t - 1}$$

$$= m + m \sum_{k=i}^{t-1} \frac{1}{n_{0} + k} = m + m \left(\sum_{k=1}^{t-1} \frac{1}{n_{0} + k} - \sum_{k=1}^{i-1} \frac{1}{n_{0} + k} \right)$$

$$= m + m \left(\sum_{k=n_{0}+1}^{n_{0}+t-1} \frac{1}{k} - \sum_{k=n_{0}+1}^{n_{0}+i-1} \frac{1}{k} \right)$$

$$= m + m (\log(n_{0} + t - 1) - \log(n_{0} + 1) - (\log(n_{0} + i - 1) - \log(n_{0} + 1)))$$

$$= m + m (\log(n_{0} + t - 1) - \log(n_{0} + i - 1))$$

$$= m \left(1 + \log \frac{n_{0}+t-1}{n_{0}+i-1} \right)$$

$$\approx m \left(1 + \log \frac{t-1}{n_{0}+i-1} \right), \text{ when t is very large}$$

$$\approx m \left(1 + \log \frac{t}{i} \right)$$
Note:
$$\sum_{k=1}^{n} \frac{1}{k} \sim \log n$$

Statistical Graph Model – Dynamic Graph

Statistical Graph Model – Dynamic Graph

Find all nodes that at time t has degree less than k i.e., $k_i(t) \le k$? e.g., $k_i(t) \le 50$ t=200

DGL

Find all nodes that at time t has degree less than k i.e., $k_i(t) \le k$?

Note: expected *i*-node degree at time *t* is $k_i(t) = m(1 + \log(\frac{t}{i}))$

$$k_{i}(t) = m \left(1 + \log \left(\frac{t}{i} \right) \right) \leq k$$
$$\left(\log \left(\frac{t}{i} \right) \right) \leq \frac{k}{m} - 1$$
$$\frac{t}{i} \leq e^{\frac{k-m}{m}}$$
$$\frac{t}{i} \leq e^{\frac{k-m}{m}}$$
$$\frac{t}{i} \leq e^{\frac{m-k}{m}}$$

Because initially they all have at least m edges

This is exponential, not power law...

Preferential attachment model

Barabasi and Albert, 1999.

- Dynamic growth model
 - Starting point
 - t = 0, n_o unconnected nodes
 - Growth
 - On every time step $t = \{1, 2, 3, ...\}$ we add a new node with $m \le n_0$ edges
 - i.e., at time t = i the new node will have degree k_i = m
 - Preferential Attachment
 - Form m edges with nodes existing in the graph proportional to the node existing degrees k_i
 - Probability to attach to any node already in the network

$$\boldsymbol{\Pi}(\boldsymbol{k}_i) = \frac{\boldsymbol{k}_i}{\sum_j \boldsymbol{k}_j}$$

Stochastic Growth Model $\Pi(k_i) = \frac{1}{n_0 + t - 1}$

After t steps: $n_0 + t$ nodes and mt edges

- Idea: We want to generate a random graph G = (V, E) with a fixed degree distribution
- Let D be a sequence of node degrees $\{k_1, k_2, \dots, k_n\}$ where |V| = n
 - Then we know the number of edges

$$|E| = m = \frac{1}{2} \sum_{i=1}^{n} k_i$$

- Idea: We want to generate a random graph G = (V, E) with a fixed degree distribution
- Let D be a sequence of node degrees $\{k_1, k_2, \dots, k_n\}$ where |V| = n
 - Then we know the number of edges

$$|E| = m = \frac{1}{2} \sum_{i=1}^{n} k_i$$

Generation process: Connect the stubs from each node (seen below) Example: D = {5,3,2,1,1}

- Idea: We want to generate a random graph G = (V, E) with a fixed degree distribution
- Let D be a sequence of node degrees {k₁, k₂, ..., k_n} where |V| = n
 - Then we know the number of edges

$$|E| = m = \frac{1}{2} \sum_{i=1}^{n} k_i$$

Generation process: Connect the stubs from each node (seen below) Example: D = {5,3,2,1,1}

- Idea: We want to generate a random graph G =
 (V, E) with a fixed degree distribution
- Let D be a sequence of node degrees $\{k_1, k_2, \dots, k_n\}$ where |V| = n
 - Then we know the number of edges

$$|E| = m = \frac{1}{2} \sum_{i=1}^{n} k_i$$

Generation process: Connect the stubs from each node (seen below)

Example: D = {5,3,2,1,1}

Note: Allows for selfloops and multiple edges between a pair of nodes.

- Idea: We want to generate a random graph G =
 (V, E) with a fixed degree distribution
- Let D be a sequence of node degrees $\{k_1, k_2, \dots, k_n\}$ where |V| = n
 - Then we know the number of edges

$$|E| = m = \frac{1}{2} \sum_{i=1}^{n} k_i$$

What is the probability that two nodes i and j are connected? from i

$$p_{ij} = \frac{k_i k_j}{2m - 1}$$

$$k_i k_i$$

$$k_i k_i$$

$$k_i$$

Total possible

stubs to start

Total possible stubs to

connect to for j

k_i

Any Question?

