Statistical Graph Model

Random Graph, Small World Model

Yu Wang, Ph.D.
Assistant Professor
Computer and Information Science
University of Oregon
CS 410/510 - Fall 2024




Statistical Graph Model %

Why Statistical Analysis?
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Statistical Graph Model

Why Statistical Analysis?
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Why Statistical Network Analysis?

What is the average degree?

How much percentage of users have
degree less than 1?
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Statistical Graph Model — Random Graph Models — G (n, m)

In G(n,m), a graph is chosen uniformly at random from the collection of
all graphs which have n nodes and m edges

What does graph with n nodes look like?
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How many edges would the graph with n nodes potentially have?
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If the graph with n nodes also have m edges, how many possibilities are there?
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Statistical Graph Model — Random Graph Models

What is the distribution of
graph with 3 nodes
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What is the distribution of
graph with 3 nodes and 2 edges
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Statistical Graph Model — Random Graph Models — G(n, p)

In G(n,p), a graph is constructed by connecting labeled nodes randomly.
Each edge is included in the graph with probability p.
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G (n,p): arandom graph with totally n nodes and among each pair
of nodes, the edge is added with the probability of p

What is the expectation of the number of edges?
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Statistical Graph Model — Random Graph Models — G(n, p)

In G(n,p), a graph is constructed by connecting labeled nodes randomly.
Each edge is included in the graph with probability p.

é é) 1 1 How many steps should we consider?
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G (n,p): arandom graph with totally n nodes and among each pair
of nodes, the edge is added with the probability of p

What is the expectation of the average degree?
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Statistical Graph Model — Random Graph Models — G (n, p)

What is the probability that a node i has a degree d; = k?

P(d; = k) = P(k) = Ck_,p*(1 —p)n~17F

Bernoulli distribution
p¥ - probability that connects k nodes (i.e., has k-edges)

(1 — p)™~1-K) _ probability that does not connect to any other
node of the n-1 other nodes (i.e., since no self loops)

CK_, - number of ways to select k nodes from the other n-1

= Limiting case of Bernoulli distribution, when n — oo if we fix
<k>=pn=1

Proof P(k) = o =

Poisson distribution from
Binomial Distribution
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https://medium.com/@andrew.chamberlain/deriving-the-poisson-distribution-from-the-binomial-distribution-840cc1668239

Statistical Graph Model — Random Graph Models — G (n, p) %

= Limiting case of Bernoulli distribution, when n — oo if we fix
<k>=pn=41

Proof P(k) =

k! k!
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What does this
node’s degree
looks like?
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https://medium.com/@andrew.chamberlain/deriving-the-poisson-distribution-from-the-binomial-distribution-840cc1668239

Statistical Graph Model — Random Graph Models — G (n, p) %

_ Each node would have a degree
What does this

S L node’s degree
K looks like? dq,dp, ds, ..., djy
@
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Statistical Graph Model — Small World

Six Degrees of Kevin Bacon

Six Degrees of Kevin Bacon. Six Degrees of Kevin
Bacon is a parlour game based on the "six degrees of
separation" concept, which posits that any two people
on Earth are six or fewer acquaintance links apart.

= Nodes: Hollywood actors

= Edges: CO'appea rance in a movie Jim Carrey has a Bacon number of 2. Find a different link
Jim Carrey

The Number 23 |
Logan Lerman
My One and Only |

N
Kevin Bacon
Kevin Bacon to Find link | More options >>

DGL 14 0

= Bacon# = # of steps from Kevin Bacon

oracleofbacon.org



http://oracleofbacon.org/

Statistical Graph Model — Small World

Small world experiment

= Stanley Milgram 1967
= 300 randomly selected people

= Asked them all to get a letter to a stockbroker in Boston
by passing the letter through people they know
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Statistical Graph Model — Small World

Motivation:
= maintain high clustering and small diameter

Example:
Clustering coefficient C=1/2
Graph diameter = 8




Statistical Graph Model — Small World %

Idea:
= Randomly reconnect some links
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Watts and Strogatz 1998.

Single parameter model
= Go between regular lattice and random graph

= Start with regular lattice of n nodes, k edges per vertex
where k<<n

= Randomly reconnect with other nodes with probability p
= Creates pnk/2 “long distance” connections
= p=0 regular lattice and p=1 random graph




Statistical Graph Model — Small World

Regular Small-world
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Increasing randomness
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Statistical Graph Model — Dynamic Graph

= What does a real graph look like?

= What is normal/abnormal?

= Are real graphs random?

= Real Networks are growing!

= Evolving with time
= New nodes and edges

= Citation/collaboration networks
= Web
= Social networks
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Statistical Graph Model — Random Graph Models — G (n, p)

= Consider G, ,, as a function of p
O

= p=0, empty graph ¢

® o
= p=1, complete (full) graph &
= There exist a critical p., structural changes from
Pp<Ppctop > pc i‘

Gigantic connected component appears atp > p.




Statistical Graph Model — Random Graph Models — G (n, p) %
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At the critical value nodes start becoming connected
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Statistical Graph Model — Random Graph Models — G (n, p)

MNote:
Just the number of n —Ngcce

nodes notinGCC W =

Phase Transition ekl

Let u be the fraction of nodes that do not belong to GCC.
The probability that a node does not belong to the GCC is

n —Ngee
u = =

n -

Pl=0)V+Pk=D+u+Plk=2)+u*>+Plk=3)*u>+

— T T—e.g,

_E.g., el [ ]
B -]

Necc=number of nodes in GCC

¥ |f the node has 0 neighbors

5 |f the node has 1 neighbor, then that node should not be
connected to GCC

5 |f the node has 2 neighbors, then those two nodes should not be
connected to GCC
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Statistical Graph Model — Random Graph Models — G (n, p) %

Substitute
Ake=4

Phase Transition Pk =10 ="

Note: A =pn =<k >

= Let u — fraction of nodes that do not belong to GCC. The
probability that a node does not belong to the GCC
u=Pk=1*u+Pk=2)*u>+Plk=3)*u..=
;{k -A /lk 1 k
= Z P(k)uk = :] uk=e* ) — yk=¢4 (Au)
k=0 k=0
z"

k! k!
k=0 k=0
oo
= ekt = ghu-1) R
n=0 """

0]

Note: Pull e=% out of the sum

Note: Combine u® with A* (Taylor expansion =)
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Statistical Graph Model — Random Graph Models — G (n, p)

= Let u — fraction of nodes that do not belong to GCC.
The probability that a node does not belong to the
GCC

U = eru-1)

Let s — fraction of nodes belonging to GCC (size of GCC)
s=1—u
1l—-s=e™%

High density: What if A = oo, thens = 1
Low density: Whatif A = 0, thens = 0
Note: A =pn =<k >

DGL 24 0




Statistical Graph Model — Random Graph Models — G (n, p) %

Phase Transition

When these intersect
that is our solution —As

s=1—e
S ?»5

1
(a)

z\\

N
= 08
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0.4}
Take the derivative

02

Sze of the glant component S

non-zero solution exists when (at s = 0): Only can happen then y,

. starts above the dotted line
Slope \e

critical value:

Interpretation: If having on average more

than one neighbor then we have GCC )\C — <k> — pc n— 1 . pc —

DGL s )




Statistical Graph Model — Random Graph Models — G (n, p)
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Any Question?
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WHO? WHERE? WHAT? HOW?
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