

Random Graph, Small World Model

Yu Wang, Ph.D. Assistant Professor Computer and Information Science University of Oregon CS 410/510 - Fall 2024

DGL 2 2

$$
f(x)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}
$$

Why Statistical Network Analysis?

How much percentage of users have degree less than 1?

- Random Graph Model
- Small World Model
- Barabasi-Albert Model
- Other Models

- **Random Graph Model**
- **Small World Model**
- Barabasi-Albert Model
- Other Models

In $G(n, m)$, a graph is chosen uniformly at random from the collection of all graphs which have n nodes and m edges

What does graph with *n* **nodes look like?**

How many edges would the graph with n nodes potentially have?

$$
0,1,2,\ldots C_n^2
$$

If the graph with **n** nodes also have **m** edges, how many possibilities are there?

In $G(n, p)$, a graph is constructed by connecting labeled nodes randomly. **Each edge is included in the graph with probability** .

How many steps should we consider?

$$
C_n^2 = \frac{n(n-1)}{2}
$$

 $G(n, p)$: a random graph with totally *n* nodes and among each pair of nodes, the edge is added with the probability of p

What is the expectation of the number of edges?

$$
\bar{m}=p\frac{n(n-1)}{2}
$$

In $G(n, p)$, a graph is constructed by connecting labeled nodes randomly. **Each edge is included in the graph with probability** .

How many steps should we consider?

$$
C_n^2 = \frac{n(n-1)}{2}
$$

 $G(n, p)$: a random graph with totally *n* nodes and among each pair of nodes, the edge is added with the probability of p

What is the expectation of the average degree?

$$
\bar{k} = \frac{2\bar{m}}{n} = 2 * \frac{p\frac{n(n-1)}{2}}{n} = p(n-1)
$$

What is the probability that a node *i* has a degree $d_i = k$?

$$
P(d_i = k) = P(k) = C_{n-1}^k p^k (1-p)^{n-1-k}
$$

Bernoulli distribution p^k - probability that connects k nodes (i.e., has k-edges) $(1-p)^{(n-1-k)}$ - probability that does not connect to any other node of the n-1 other nodes (i.e., since no self loops) C_{n-1}^k - number of ways to select k nodes from the other n-1

> **Example 1** Limiting case of Bernoulli distribution, when $n \to \infty$ if we fix $\langle k \rangle$ = pn= λ

[Proof](https://medium.com/@andrew.chamberlain/deriving-the-poisson-distribution-from-the-binomial-distribution-840cc1668239)

$$
P(k) = \frac{^k e^{}}{k!} = \frac{\lambda^k e^{-\lambda}}{k!}
$$

Poisson distribution from Binomial Distribution

Six Degrees of Kevin Bacon

Six Degrees of Kevin Bacon. Six Degrees of Kevin Bacon is a parlour game based on the "six degrees of separation" concept, which posits that any two people on Earth are six or fewer acquaintance links apart.

- Edges: Co-appearance in a movie
- **Bacon#** = # of steps from Kevin Bacon

oracleofbacon.org

Small world experiment

Stanley Milgram 1967

- 300 randomly selected people
- Asked them all to get a letter to a stockbroker in Boston by passing the letter through people they know

- How many steps did it take?
	- 6.2 steps on average

Motivation:

■ maintain high clustering and small diameter

Example: Clustering coefficient C=1/2 Graph diameter = 8

Idea:

Randomly reconnect some links

Watts and Strogatz 1998.

Single parameter model

- Go between regular lattice and random graph
- **Start with regular lattice of n nodes, k edges per vertex** where k<<n
- Randomly reconnect with other nodes with probability p
	- Creates pnk/2 "long distance" connections
- p=0 regular lattice and p=1 random graph

Regular

Small-world

Increasing randomness

- What does a real graph look like?
- What is normal/abnormal?
- Are real graphs random?
- Real Networks are growing!
	- Evolving with time
		- New nodes and edges
	- Citation/collaboration networks
	- \blacksquare Web
	- Social networks

- \blacksquare p=0, empty graph
- \bullet p=1, complete (full) graph

There exist a critical p_c **, structural changes from** $p < p_c$ to $p > p_c$

Gigantic connected component appears at $p > p_c$

At the critical value nodes start becoming connected

- If the node has 1 neighbor, then that node should not be connected to GCC
- If the node has 2 neighbors, then those two nodes should not be connected to GCC

Phase Transition

Substitute
\n
$$
P(k_i = k) = \frac{\lambda^k e^{-\lambda}}{k!}
$$
\nNote: $\lambda = pn =$

 \blacksquare Let u – fraction of nodes that do not belong to GCC. The probability that a node does not belong to the GCC $u = P(k = 1) * u + P(k = 2) * u² + P(k = 3) * u³ ...$

$$
= \sum_{k=0}^{\infty} P(k)u^{k} = \sum_{k=0}^{\infty} \frac{\lambda^{k}e^{-\lambda}}{k!} \quad u^{k} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \quad u^{k} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda u)^{k}}{k!}
$$

$$
= e^{-\lambda}e^{\lambda u} = e^{\lambda(u-1)}
$$

$$
e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Note: Pull $e^{-\lambda}$ out of the sum Note: Combine u^k with λ^k (Taylor expansion \rightarrow)

 \blacksquare Let u – fraction of nodes that do not belong to GCC. The probability that a node does not belong to the **GCC**

$$
u=e^{\lambda(u-1)}
$$

Let s – fraction of nodes belonging to GCC (size of GCC) $s=1-u$ $1 - s = e^{-\lambda s}$

High density: What if $\lambda \to \infty$, then $s \to 1$ Low density: What if $\lambda \to 0$, then $s \to 0$ Note: $\lambda = pn = \langle k \rangle$

Slope $\lambda e^{-\lambda s} > 1$

Only can happen then y_2 starts above the dotted line

critical value:

$$
\lambda_c = 1
$$

Interpretation: If having on average more
than one neighbor then we have GCC $\lambda_c = \langle k \rangle = p_c n = 1, \quad p_c = \frac{1}{n}$

Phase Transition

Any Question?

