

Mining & Learning on Graphs

Course Overview and Logistics

Yu Wang, Ph.D.
Assistant Professor
Computer and Information Science
University of Oregon
CS 410/510 - Fall 2024

Welcome

Welcome to the CS410/510 - Mining & Learning on Graphs!

Yu (Jack) Wang You

Contact: yuwang@uoregon.edu

Vanderbilt University, Nashville The Home Depot Intern, Atlanta Adobe Intern, San Jose University of Oregon, Eugene

Our lab is currently recruiting!

- Data Mining and Machine Learning
- Graph and Geometric Machine Learning
- Data-centric + GenAI
- Trustworthy + Textual-attributed Graph
- AI/ML Application: Information Retrieval/Science/Cyber-security

Graph-structured Data is Everywhere!

Graph-based Task is Everywhere!

Paper Management

Anomaly Detection

Social Prediction Q

Recommender system

Question Answering

Example 1: Academic Paper Management

Cora - Paper Citation Networks

1 Introduction

We consider the problem of classifying nodes (such as documents) in a graph (such as a citation network), where labels are only available for a small subset of nodes. This problem can be framed as graph-based semi-supervised learning, where label information is smoothed over the graph via some form of explicit graph-based regularization (Zhu et al., 2003; Zhou et al., 2004; Belkin et al., 2006; Weston et al., 2012), e.g. by using a graph Laplacian regularization term in the loss function:

$$\mathcal{L} = \mathcal{L}_0 + \lambda \mathcal{L}_{\text{reg}}, \quad \text{with} \quad \mathcal{L}_{\text{reg}} = \sum_{i,j} A_{ij} \|f(X_i) - f(X_j)\|^2 = f(X)^\top \Delta f(X).$$
 (1)

- Machine Learning
- Computer System
- What do you think?

Example 2: Personalization

Amazon – Customer-Product Network

Example 2: Personalization

Amazon – Customer-Product Network

Recommendation based on customer-product interaction

Example 3: Question-answering

Knowledge Graph

Who painted Mona Lisa?

- (1) Locate Mona Lisa
- (2) Find her 1-hop neighbor
- (3) Da Vinci Painted Mona Lisa

How about LLMs?

Who painted Mona Lisa? Answer in 5 words

Leona

Leonardo da Vinci painted Mona Lisa.

Store a large amount of factual knowledge in a symbolic format

LLMs store knowledge in their parameters

Data Mining and Machine Learning on Graphs

Data mining
Analyze data
Derive patterns and relationships
Solve real-world problems

Machine Learning
Design Model
Allow Computer to Learn and Improve
Without being explicit programmed

Data Mining and Machine Learning on Graphs

Data mining

Machine Learning

Real-world Applications

Data Structure

- Image
- Language
- Time-series Data
- Graph
 - Document Graph
 - Infrastructure Graph
 - Scientific Graph
 - Social Graph
 - •

Purpose

- Utility Performance
- Fairness
- Privacy
- Diversity
- Robustness
- Adversarial attack
- Eco-friendly
- Efficiency

Data Mining and Machine Learning on Graphs

Data mining

Machine Learning

Real-world Applications

Data Structure

- Image
- Language
- Time-series Data
- Graph
 - Document Graph
 - Infrastructure Graph
 - Scientific Graph
 - Social Graph
 -

Purpose

- Utility Performance
- Fairness
- Privacy
- Diversity
- Robustness
- Adversarial attack
- Eco-friendly
- Efficiency

Data Mining & Machine Learning on Graphs

Network Analysis

- Background
 - Graph Theory
 - Linear Algebra
- Statistical Graph Model
 - Erdos-Renyi, Barabasi-Albert
 - Small-World, Chung-Lu
- Network Analysis
 - Degree, Closeness
 - Betweeness, Katz
 - Eigenvector, PageRank

Computation Methods

- Link Prediction
- Node Classification
- Graph Classification
- Network Diffusion
 - **Graph Clustering**

Machine Learning on Graph

- Network Embedding
- Graph Neural Networks
- Self-supervised Learning
- Trustworthy Issue
- Data-quality Issue

0/01 10/22 11/07 12/03

Any Question?

Course Logistics - Overview

Website

https://ml-graph.github.io/fall-2024/

All details are in this website!

Course Description

Graph-structured data is ubiquitous worldwide, e.g., social networks like Facebook, e-commerce platforms like Amazon, infrastructures like transportation networks, and chemical graphs like molecules. This course explores basic analytical techniques, computational methods, and graph machine learning models for graph-related applications.

Topics include:

- . Graph Foundations: Basic Graph Theory, Statistical Graph Models, Network Properties.
- Graph Computational Methods: Link Prediction, Node/Graph Classification, Diffusion, and Clustering.
- Deep Graph Models: GNNs, Self-supervised Learning, Data Quality and Trustworthy Issues.
- Real-world Applications: Academic Paper Management, Recommender System, Drug Discovery.

Students will complete assigned homework, a midterm exam, and a team-based course project.

Course Logistics – Goals and Requirements

Goals:

- Broad overview of basic knowledge and algorithm foundations of ML/DM on Graphs
- Hands-on experience with solving GML/DM problems
- Master real-world GML/DM applications

Requirements:

- Little to no background in ML
- Basic linear algebra, probability and statistics, and calculus
- Programming Python
- Jupyter Notebooks for homework assignments

Course Logistics – Basic Contents

Times:

Classes: Tuesday/Thursday 4:00-5:20 pm, 132 GSH

Office hours: Friday 3:30-5:00 pm PST, other time by appointment

Zoom: https://uoregon.zoom.us/j/4052006678

Components:

- 3 homework assignments (35%)
- Midterm (30% CS410, 25% CS510)
- Final Project (30%)
- Participation (5%)
- Paper Presentation (5% CS510)
- Homework submitted with Overleaf (5% Bonus)

Course Logistics – Homework Assignments

Assignments

- Writing Assignment 1
- Programming Assignment 2
- Programming Assignment 3

No collaborations are allowed for assignments unless otherwise specified. Late Assignments will receive:

- 20% reduction, if submitting within (0, 24) hours late
- 40% reduction, if submitting within [24, 48) hours late
- 100% reduction, if submitting within [48, ∞) hours late, unless having documental special circumstances

You can download the assignments here. Also check out each assignment page for any additional info.

Assignment 1

Assignment 2

Assignment 3

Will Release Soon!

Course Logistics – Paper Presentation

https://ml-graph.github.io/fall-2024/paper/

- 1. **Introduction and Background** What is the general impact and background of the topic?
- 2. **Motivation and Problem** What is the core research problem and why do we study it?
- 3. **Related Work and Challenges** How did previous works on this problem and what are some challenges?
- 4. **Proposed Solutions/Methods and Rationale** What are the proposed methods/techniques and why propose them? What specific reasons that solving this problem would require these porposed methods/techniques
- 5. **Experimental Setting, Results and Analysis** What experiments are designed to verify the proposed method? How are results being discussed and analyzed? Are there any interesting findings?
- 5. Conclusion and Future Work

Course Logistics – Paper Presentation

Paper

Graph Retrieval Augmented Generation

[ArXiv 2024] Graph Retrieval-Augmented Generation: A Survey [Paper]

[ArXiv 2024] From Local to Global: A Graph RAG Approach to Query-Focused Summarization [Paper]

Social Network Analysis

[ArXiv 2024] Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [Paper]

[ArXiv 2024] Scaling Large-Language-Model-based Multi-Agent Collaboration [Paper]

[ArXiv 2024] Network Formation and Dynamics Among Multi-LLMs [Paper]

[ArXiv 2024] Large Language Models Empowered Agent-based Modeling and Simulation: A Survey and Perspectives [Paper]

[ArXiv 2024] LLMs generate structurally realistic social networks but overestimate political homophily [Paper]

GraphAI for Science

[NeurlPS 2024] Learning to Group Auxiliary Datasets for Molecule [Paper]

[ICLR 2023] **DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking** [Paper]

[ICML 2022] Equivariant Diffusion for Molecule Generation in 3D [Paper]

[ICLR 2023] DiGress: Discrete Denoising diffusion for graph generation [Paper]

GraphAI for Cybersecurity and System

[|SAC 2020] RouteNet: Leveraging Graph Neural Networks for Network Modeling and Optimization in SDN [Paper]

[ASCE 2022] Graph Neural Networks for State Estimation in Water Distribution Systems: Application of Supervised and Semisupervised Learning [Paper]

[ASCE 2022] Optimal Power Flow using Graph Neural Networks [Paper]

[ArXiv 2024] **PowerGraph: A power grid benchmark dataset for graph neural networks** [Paper]

[IEEE SmartGridComm] On Graph Theory vs. Time-Domain Discrete-Event Simulation for Topology-Informed Assessment of Power Grid Cyber Risk [Paper]

Course Logistics – Grades

Course Assessment and Grading Scale

Category	CS-410 (%)	CS-510 (%)
Assignment	35%	35%
Midterm Exam	30%	25%
Final Project	30%	35%
Participation	5%	5%
Paper Presentation	0%	5%

Grade	Range
А	A+: 98-100, A: 93-97, A-: 90-92
В	B+: 87-89, B: 83-86, B-: 80-82
С	C+: 77-79, C: 73-76, C-: 60-72
F	F: <60

scds.uoregon.edu/cs

y username

Any Question?

