Assignmentl of CS 410/510: Mining & Learning on Graphs
Instructor: Yu Wang, Website: https://ml-graph.github.io/fall-2024/,
Due: 10/21/2024 23:59 PST

This homework is meant only for you to complete. In other words, you
should not work with others in the course or seek help from others besides the
instructor or TA. Additionally, if you use AI assistants, this is fine, but please
acknowledge this somewhere in your submission (and know that you’re taking

full responsibility for your submission).

Please submit your solutions on Canvas. For questions 1-4, 6, and 7, please type your
answers or hand-write (but it needs to be legible) and submit in pdf form. For question 5, 8,
and 9 please submit either a Python notebook file that contains all the code and results (i.e.,
figures and calculated values), or submit a Python source file and another pdf document
containing the results (i.e., figures and calculated values). Do not include the downloaded

network dataset from question 5 in your submission.

There will be a deduction of 10 points if submitting other formats besides the
ones mentioned above (e.g., submitting .docx instead of a pdf or .zip combining

multiple files).


https://ml-graph.github.io/fall-2024/

1. [15 points] Note that the local clustering coefficient is defined by the following:

#of links between neighbors

C_

"~ #maximum possible number of links between negihbors

(1)

(a) [10 points] Calculate the local clustering coefficient C' for a node with degree k in an

Erdos-Renyi Random Graph G, .

(b) [b points] Using the fact that the < k >= p(n—1) ~ pn, discuss why C — 0 as n — o

if we keep the mean degree < k > fixed by using the result you obtained from 1(a).



2. [20 points] Note that in the G, , Erdos-Renyi random graph model (which generates
undirected graphs) we have that each edge exists with probability p. Thus, an edge (v;, v;)
between two vertices v; and v; exists with probability p, and similarly for an edge (v;, vg)
between v; and vy, etc. Further, remember that a triangle exists between three nodes v;,

vj, and vy, if and only if there exists three edges (v;,v;),(v;, vk), (vk,v;) in the graph.

(a) [10 points] Calculate the number of triangles that will exist in a graph generated by
the Erdos-Renyi Random Graph Model G,, ,, in terms of n and < k£ >. Below is the

general form of calculating the number of triangles:
# of triangles = AS;3 (2)

where A = probability for any particular set of three nodes to form a triangle; Sz =

number of possible sets of three nodes in a graph of n nodes.

(b) [10 points] Using the fact that the < k >= p(n — 1) ~ pn, show that the number of
triangles you calculated (from the result above in 2(a)) is approximately equal to the

below as n — .

1
# of triangles = your answer from 2(a) here ~ 6 < k>3 (3)



3. [15 points| In the lecture “GraphModels-AdditionalModels”, we discussed the expected
number of common neighbors for the configuration model. More specifically, we discussed
why it was equal to the following:

> (5) (M5 @

l

when assuming large number of edges m (i.e., having p;; = 2(]2’“_"1) ~ g:;) We further

noted that Eq.(2) can be simplified to the following:

(k?) — (k)
(k)

where we again note that (k) is the average degree of the nodes (i.e., = >, k;) and we use

Dij (5)

(k?) to denote the average of the squared degrees (i.e., + 3", k2).

Show that Eq.(2) equals Eq.(3). Note that you must show all necessary steps to establish

this relationship.



4. [14 points] Remember that in the configuration model we were able to provide a degree
sequence D = {k1, ko, - ,k,} representing the degree for each of the n nodes in the graph
to be constructed. Assume that the degree sequence provided is the same for all nodes, i.e.,

k1 = ko = ... =k, (and that the degree sequence is valid).

(a) [7 points] Describe what the degree distribution would look like for this graph.

(b) [7 points] What happens to the generated graph when k1 = ko = ... =k, = 1 (i.e.,
all nodes have degree equal to 1). If each node only has degree one, this means that
they are all required to only have one edge connected to them, since having zero edges
or more than one edge would result in a degree lower or higher than 1, respectively.
Hence, in this setting, how many connected components will be in the generated graph?
Note that there is an exact answer since all possible graphs that can be constructed

with this degree sequence will have the same number of connected components.

Note: It is assumed the degree sequence k1 = ko = k3 - - - ky, is a valid degree sequence
for the configuration model, since not all sequences are valid. For example, if n = 1,
then we have k1 = 1, but it is impossible to have a graph with a single node having

degree one, since even if that node has a self-loop, its degree would be 2.



5. [35 points] Graph Modeling Programming Questions.
Please go through the Python NetworkX tutorial to familiarize yourself with the package.
Write a program to generate the following types of graphs:

(a) (2 points] Erdos-Renyi Gy, , graphs with n = 1000 and p equal to the following: 0.001,
0.005, 0.01 (i.e., your program will create 3 graphs here). Please see this API in
NetworkX.

(b) [2 points] Barabasi-Albert preferential attachment model with n = 1000 and m equal
to the following: 1, 2, 5 (i.e., your program will create 3 graphs here). Please see this

API in NetworkX.

(¢) [2 points] Watts-Strogatz small-world graphs with n = 1000, k£ = 4, and p equal to
the following: 0, 0.1, 1 (i.e., your program will create 3 graphs here). Please see this

API in NetworkX.

[5 points] Download a real social network from one of the two links below (note that the
first link shows visuals of many network properties if you want to see them): linkl, link2

This graph represents 59,835 private messages sent among a set of 1,899 students from
the University of California, Irvine. When processing this dataset which is of the form
source, destination, and time, you can ignore the time component and only use the source
and destination links. Furthermore, if multiple messages were exchanged between the same
pair of users, this can just be represented as a simple graph with binary edges (i.e., you do
not need to consider weights here based on the number of messages they exchanged). This
should collapse the 59,835 messages down to 20,296 edges.

Next, for each of the generated graphs and the downloaded real-world social network,

please perform the following:

(a) [8 points] For each of these graphs plot the degree distribution similar to that found in
the answer given by Dr. Brian Keegan in the below answer on StackOverflow: link3
Please note that you will need to make some adjustments as the NetworkX and/or

Matplotlib packages have slightly changed.

(b) [8 points] Discover the number of components in the graphs and what percentage of
the nodes are in the largest component.

Please see this API in NetworkX.

(c) [8 points] On the largest component in the graph (found in the above) compute the
average shortest path length between all the nodes in that component.

Please see this API in NetworkX.


https://networkx.github.io/documentation/stable/tutorial.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.gnp_random_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.watts_strogatz_graph.html
http://konect.cc/networks/opsahl-ucsocial/
https://snap.stanford.edu/data/CollegeMsg.html
https://stackoverflow.com/questions/16486955/plotting-log-binned-network-degree-distributions
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.components.connected_components.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.shortest_paths.generic.average_shortest_path_length.html

6. [10 points] Please note here that you have read the below to receive the
points for this question. You do not need to do any work for this question.

We defined the Newman variant of the Katz centrality as:
C = Z AijCj + B; (6)
J

where o and [3; are positive constants. Note that for simplicity this can be rewritten as
the Alpha-Centrality where we let the personalized vector 3 = 1 (i.e, the vector of ones) as
follows:

c=aAc+1 (7)

(a) We mentioned in the lecture that the Alpha-Centrality of Eq. (7) can be rearranged

to obtain the following:

c=I-aA)™"1 (8)
Please show the necessary steps on how to obtain Eq.(6) from Eq.(5).

Steps:

c=aAc+1
c—aAc=1
Ic—aAc=1 since c=1Ic
(I—aA)c=1 since Ac+Bc=(A+B)c
(I-aA) ' (I-aA)c=(T—-aA)™'1 sssuming the matrix is invertible in (b)

c=(T-aA) "1

(b) In Eq.(5) we can see that the parameter « controls the contribution of the eigenvector
term and constant term. When choosing the value for & we must ensure that the value
is not too large, but if we set @ = 0 then we only have the constant term remaining
(i.e., all nodes would have the same centrality of 1). Hence, if we were to start with
a from zero and increasing the value, we note that eventually this would cause the
centrality values to diverge (which can be more easily seen from the perspective of
Eq.(4)). This divergence happens when (I — aA)~! diverges (i.e., det(A —a~11) =0
where det denoting the determinant of a matrix and based on the definition of matrix
inverse). Note that this is the characteristic equation having roots a~!, which means
that A = é Then, given we seek to the smallest value for «, this relates to finding

the largest value for A, which is the largest eigenvalue \; of the matrix of A.



7. [30 points] We defined the PageRank matrix in the lecture as follows:

eeT

P =aP +(1- a)=— (9)

where it was mentioned that Google utilized oo = 0.85.

(a) [15 points] Discuss what happens to the centrality values if we set o = 0 and whether
any of the three requirements for the Perron-Frobenius theorem are violated with this

choice of a.

(b) [15 points] Discuss what happens to the centrality values if we set @ = 1 and whether
any of the three requirements for the Perron-Frobenius theorem are violated with this

choice of a.



8. [41 points] Centrality Time Complexity and Correlations. Using NetworkX, please
calculate the centrality measures and record the running time for each of the methods on
each of the graph types (e.g., using the Python time module). The first component is to
evaluate the running times empirically. Note that if a (graph, centrality) pair below does
not finish running in roughly 5 minutes on your machine then you can note > 5min. The

second part is to look at the correlation between the centrality measures.

(a) [2.5 points] Erdos-Renyi G, , graphs with (n = 500, p = 0.002) and (n = 5000,
p = 0.0002) (i.e., your program will create 2 graphs here). Please see API in NetworkX.

(b) [2.5 points] Barabasi-Albert preferential attachment model with (n = 500, m = 2) and
(n = 5000, m = 2) (i.e., your program will create 2 graphs here). Please see API in
NetworkX.

(c) [4 points] Closeness Centrality. Please see APT in NetworkX.
(d) [4 points] Betweenness Centrality. Please see APT in NetworkX.

(e) [4 points] Eigenvector Centrality. Please see API in NetworkX.

Using the SciPy stats calculate both the correlation coefficients comparing the following

centrality scores.

(a) [4 points] Pearson correlation with Closeness-Betweenness Centralities on Barabasi-

Albert network (n = 5000, m = 2)

(b) [4 points] Pearson correlation with Closeness-Eigenvector Centralities on Barabasi-

Albert network (n = 5000, m = 2)

(c) [4 points] Pearson correlation with Betweenness-Eigenvector Centralities on Barabasi-

Albert network (n = 5000, m = 2)

(d) [4 points] Spearman correlation with Closeness-Betweenness Centralities on Barabasi-

Albert network (n = 5000, m = 2)

(e) [4 points] Spearman correlation with Closeness-Eigenvector Centralities on Barabasi-

Albert network (n = 5000, m = 2)

(f) [4 points] Spearman correlation with Betweenness-Eigenvector Centralities on Barabasi-
Albert network (n = 5000, m = 2)

Please see “scipy.stats.spearmanr” and “scipy.stats.pearsonr”.


https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.gnp_random_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.barabasi_albert_graph.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.closeness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.betweenness_centrality.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.centrality.eigenvector_centrality.html
https://docs.scipy.org/doc/scipy/reference/stats.html

9. [20 points] Using NetworkX, write a program to calculate the graph-theoretic cen-
trality measure CG we discussed in the first centrality lecture. The program should take
as input a NetworkX graph, find the center of the graph, then for each node discover the
distance to the center, finally calculate the values of CG(i) for each node i in the graph.
To demonstrage the correctness of your program, please also execute your algorithm for the
Karate Club graph found at “networkx.generators.social. karate club graph”. Note that for
this question you can either choose to select a random center if there are more than one
center node, or calculate the distance values for all and take the average, but should state

in your submission which you decided to implement.

10



